Advertisement

Electrical transport and magnetoresistive properties of Nd-doped La0.8Sr0.2MnO3 ceramics

  • Xiaojin Wang
  • Qingming Chen
  • Ling Li
  • Chengyi Wang
  • Peng Sun
  • Hui ZhangEmail author
Article
  • 27 Downloads

Abstract

In this paper, La0.8−xNdxSr0.2MnO3 (x = 0.03, 0.04, 0.05, and 0.06) ceramics were synthesized by a sol–gel method. The structure, surface morphology, electrical transport, and magnetoresistive properties of these materials were studied. X-ray diffraction (XRD) revealed samples to be single-phase with a distorted perovskite structure belonged to the (\({\text{R}}\bar 3{\text{c}}\)) space group. Scanning electron microscopy (SEM) revealed the samples to contain compact grains, with the grain size increasing slightly with the amount of doping Nd3+. The standard four-probe method was used to test the electrical resistivity of the samples as a function of temperature (ρT). The metal–insulator transition temperature (Tp) shifted to lower temperatures and the resistivity (ρ) increased with the content of Nd3+. Peak temperature coefficient of resistance (TCR) and magnetoresistance (MR) were both affected by the Nd3+ substitution. At x = 0.05, peak TCR and MR reached 5.12% K−1 and 19.78%, respectively. The mechanism responsible for both electrical and magnetoresistive properties of these materials was discussed in the frame of double-exchange (DE) interaction.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 11564021), the Analysis and Testing Foundation of Kunming University of Science and Technology, and the Innovation Training Program for College Students (Grant No. 201710674053).

References

  1. 1.
    C. Zener, Interaction between the d-Shells in the transition metals ferromagnetic compounds of manganese with perovskite structure. J. Phys. Rev. 82, 403–405 (1951)CrossRefGoogle Scholar
  2. 2.
    A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144–5147 (1995)CrossRefGoogle Scholar
  3. 3.
    J. Goodenough, Colossal magnetoresistance in Ln1-xAxMnO3 perovskites. Aust. J. Phys. 52, 155–186 (1999)CrossRefGoogle Scholar
  4. 4.
    A.M. Haghirigosnet, J.P. Renard, CMR manganites: physics, thin films and devices. J. Phys. D 36, R127 (2003)CrossRefGoogle Scholar
  5. 5.
    J.B. Goodenough, Electronic structure of CMR manganites (invited). J. Appl. Phys. 81, 5330–5335 (1997)CrossRefGoogle Scholar
  6. 6.
    T.V. Ramakrishnan, Modelling colossal magnetoresistance manganites. J. Phys. 19, 497–503 (2007)Google Scholar
  7. 7.
    R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhalla, Search for room temperature high-TCR manganite/silver composites. J. Magn. Magn. Mater. 320, L89–L92 (2008)CrossRefGoogle Scholar
  8. 8.
    G.D. Tang, Z.Z. Li, L. Ma, W.H. Qi, L.Q. Wu, X.S. Ge, G.H. Wu, F.X. Hu, Three models of magnetic ordering in typical magnetic materials. Phys. Rep. 758, 1–56 (2018)CrossRefGoogle Scholar
  9. 9.
    J.J. Qian, W.H. Qi, Z.Z. Li, L. Ma, G.D. Tang, Y.N. Du, M.Y. Chen, G.H. Wu, F.X. Hu, Spin-dependent and spin-independent channels of electrical transport in perovskite manganites. RSC Adv. 8, 4417–4425 (2018)CrossRefGoogle Scholar
  10. 10.
    J.J. Qian, Z.Z. Li, W.H. Qi, L. Ma, G.D. Tang, Y.N. Du, M.Y. Chen, Study of magnetic structure and electrical-transport properties of La1-yBayMn1-xFexO3 (y  =  0.15, 0.40) perovskite manganites. J. Alloys Compd. 764, 239–249 (2018)CrossRefGoogle Scholar
  11. 11.
    D.G. Li, Y.T. Mai, J. Xiong, Y.H. Xiong, Z.L. Liu, C.S. Xiong, Studies on low-field and room-temperature magnetoresistance in La2/3(Ca1-xSrx)1/3MnO3 perovskites. J. Supercond. Novel Magn. 26, 719–723 (2012)CrossRefGoogle Scholar
  12. 12.
    T.D. Thanh, L.H. Nguyen, D.H. Manh, N.V. Chien, P.T. Phong, N.V. Khiem, L.V. Hong, N.X. Phuc, Structural, magnetic and magnetotransport behavior of La0.7SrxCa0.3−xMnO3 compounds. Physica B 407, 145–152 (2012)CrossRefGoogle Scholar
  13. 13.
    C. Zener, Interaction between the d-shells in the transition metals. Phys. Rev. 81, 440–444 (1951)CrossRefGoogle Scholar
  14. 14.
    D.Y. Cao, Y.Y. Zhang, W.X. Dong, Structure, magnetic and transport properties of La0.7Ca0.3-xSrxMnO3 thin films by sol-gel method. Ceram Int 41, S381–S386 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Baaziz, A. Tozri, E. Dhahri, Effect of particle size reduction on the structural, magnetic properties and the spin excitations in ferromagnetic insulator La0.9Sr0.1MnO3 nanoparticles. Ceram Int 41, 2955–2962 (2015)CrossRefGoogle Scholar
  16. 16.
    J. Ma, Y. Cai, W. Wang, Q. Cui, M. Theingi, H. Zhang, Q. Chen, Enhancement of temperature coefficient of resistivity in La0.67Ca0.33MnO3 polycrystalline ceramics. Ceram. Int. 40, 4963–4968 (2014)CrossRefGoogle Scholar
  17. 17.
    F. Jin, H. Zhang, X. Chen, X. Liu, Q. Chen, Improvement in electronic and magnetic transport of La0.67Ca0.33MnO3 manganites by optimizing sintering temperature. J. Sol-Gel Sci. Technol. 81, 1–8 (2016)Google Scholar
  18. 18.
    T. Sun, S. Zhao, F. Jin, X. Liu, Enhanced room-temperature MR and TCR in polycrystalline La0.67 (Ca0.33−xSrx)MnO3 ceramics by oxygen assisted sintering. Ceram Int 44, 2400–2406 (2018)CrossRefGoogle Scholar
  19. 19.
    T. Sun, J. Jiang, Q. Chen, X. Liu, Improvement of room-temperature TCR and MR in polycrystalline La0.67(Ca0.27Sr0.06)MnO3 ceramics by Ag2O doping. Ceram. Int. 44, 9865–9874 (2018)CrossRefGoogle Scholar
  20. 20.
    I. Matos, S. Se´rio, Effect of the sintering temperature on the properties of nanocrystalline Ca1-xSmxMnO3 (0 ≤ x≤0.4) powders. J. Alloys Compd. 509, 9617–9626 (2011)CrossRefGoogle Scholar
  21. 21.
    X. Yin, X. Liu, Y. Yan, Q. Chen, Preparation of La0.67Ca0.33MnO3:Agx polycrystalline by sol-gel method. J. Sol-gel Sci. Technol. 70, 361–365 (2014)CrossRefGoogle Scholar
  22. 22.
    M.D. Daivajna, A. Rao, G.S. Okram, Electrical, thermal and magnetic studies on Bi-substituted LSMO manganites. J. Magn. Magn. Mater 388, 90–95 (2015)CrossRefGoogle Scholar
  23. 23.
    A. Sendil Kumar, K.R. Reddy, A.K. Bhatnagar, Magnetization and ESR studies of La0.67(Ca1-xMgx)0.33MnO3 systems. J. Alloys Compd. 639, 139–144 (2015)CrossRefGoogle Scholar
  24. 24.
    B. Munirathinam, M. Krishnaiah, S. Arumugam, M. ManivelRaja, Electronic transport and magnetic studies of La1-xCax-0.08Sr0.04Ba0.04MnO3. J. Phys. Chem. Solids 71, 1763–1767 (2010)CrossRefGoogle Scholar
  25. 25.
    X. Chen, H. Zhang, F. Jin, X. Liu, Q.M. Chen, Fabrication of polycrystalline ceramics by sol-gel method. J. Sol-Gel Sci. Technol. 80, 168–173 (2016)CrossRefGoogle Scholar
  26. 26.
    P.M. Woodward, T. Vogt, D.E. Cox, Influence of cation size on the structural features of Ln1/2A1/2MnO3 perovskites at room temperature. Chem. Mater. 10, 3652–3665 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Zhao, X. Yue, X. Liu, Tuning room temperature T p and MR of La1-y(Cay-xSrx)MnO3 polycrystalline ceramics by Sr doping. Ceram. Int. 43, 4594–4598 (2017)CrossRefGoogle Scholar
  28. 28.
    D.S. Fan, Q. Li, Y.M. Xuan, H. Tan, J.F. Fang, Temperature-dependent infrared properties of Ca doped (La, Sr) MnO3 compositions with potential thermal control application. Appl. Therm. Eng. 51, 255–261 (2013)CrossRefGoogle Scholar
  29. 29.
    K.L. Yanapu, S.S. Samatham, D. Kumar, V. Ganesan, P.V. Reddy, Effect of bismuth doping on the physical properties of La-Li-Mn-O manganite. Appl. Phys. A 122, 199 (2016)CrossRefGoogle Scholar
  30. 30.
    J. Fontcuberta, B. Martínez, A. Seffar, S. Piñol, J.L. García-Muñoz, X. Obradors, Colossal magnetoresistance of ferromagnetic manganites: structural tuning and mechanisms. Phys. Rev. Lett. 76, 1122–1125 (1996)CrossRefGoogle Scholar
  31. 31.
    D.Y. Cao, Y.Y. Zhang, W.X. Dong, J. Yang, W. Bai, Y. Chen, G.S. Wang, X.L. Dong, X.D. Tang, Structure, magnetic and transport properties of thin films by sol-gel method. Ceram. Int. 41, S381–S386 (2015)CrossRefGoogle Scholar
  32. 32.
    G. Dong, T. Sun, F.Q. Ji, Y. Liu, S. Zhang, H. Zhang, X. Liu, Polycrystalline La0.845Sr0.155MnO3:Agx ceramics (0 ≤ x ≤ 0.5) with roomtemperature TCR and MR for improved uncooling photoelectric and magnetic devices. Ceram. Int. 45, 12162–12168 (2019)CrossRefGoogle Scholar
  33. 33.
    R. Tripathi, V.P.S. Awana, H. Kishan, G.L. Bhall, Search for room temperature high-TCR manganite/silver composites. J. Magn. Magn. Mater. 320, L89–L92 (2008)CrossRefGoogle Scholar
  34. 34.
    S. Das, T.K. Dey, Electrical conductivity and low field magnetoresistance in polycrystalline La1−xKxMnO3 pellets prepared by pyrophoric method. Solid State Commun. 134, 837–842 (2005)CrossRefGoogle Scholar
  35. 35.
    G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J Alloy Compd 429, 1–9 (2007)CrossRefGoogle Scholar
  36. 36.
    L. Li, H. Zhang, X. Liu, P. Sun, C.Y. Wang, X.J. Wang, B.B. Li, G.W. Liang, Q.M. Chen, Structure and electromagnetic properties of La0.7Ca0.3-xKxMnO3 polycrystalline ceramics. J. Ceram. Int. 45, 10558–10564 (2019)CrossRefGoogle Scholar
  37. 37.
    X.H. Yu, T. Sun, Q.M. Chen, Y.B. Duan, X. Liu, Modulation of room temperature TCR and MR in La1-xSrxMnO3 polycrystalline ceramics via Sr doping. J. Sol-Gel. Sci. Technol. 90, 221–229 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Materials Science and EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations