Advertisement

Effects of TiO2 nanoparticles addition on physical and soldering properties of Sn–xTiO2 composite solder

  • Zhiyuan Liu
  • Haoran MaEmail author
  • Shengyan Shang
  • Yunpeng Wang
  • Xiaogan Li
  • Haitao MaEmail author
Article
  • 38 Downloads

Abstract

With the miniaturization and multi-functionalization of modern microelectronic devices, the electrical, mechanical and thermal loads carried by solder joints become heavier and the reliability problems induced by solder connection also becomes prominent accordingly. It is one of the effective measures to improve the reliability of solder joints by adding nanoparticles into solders. In this research, Sn–xTiO2 (x = 0, 0.3 wt%, 0.6 wt%, 0.9 wt% and 1.2 wt%) composite solders were fabricated by mechanical rolling method and their physical, and welding properties on Cu substrate were investigated, respectively. The research results indicate that adding TiO2 nanoparticles has little impact on the melting point of the composite solders, but when the addition amount is 0.3 wt%, an optimized wettability can be obtained. Solder resistivity distinctly increases when the weight percentage of TiO2 nanoparticles exceeds 0.6 wt%. Besides, TiO2 nanoparticles can also refine the interfacial grains between solder and substrate, thus improving the linking property of solder joints. Particularly, grain refinement phenomenon is most obvious when the addition amount of TiO2 nanoparticles is 0.3 wt%. The average thickness of intermetallic compound (IMC) layer reduces from 2.80 to 2.45 μm, and the average grain diameter reduces from 1.43 to 1.04 μm. TiO2 nanoparticles are mainly distributed on the surface of Cu6Sn5 grains, and high temperature makes it difficult for TiO2 nanoparticles to adhere to the grain surface, which weakens the effect of TiO2 nanoparticles on the inhibition of IMC growth. The inhibition rate decreases from 37.5% at 250 °C to 9.36% at 300 °C.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos.: 51571049 and 51871040) and “Research Fund for International Young Scientists” of National Natural Science Foundation of China (Grant No.: 51750110504).

References

  1. 1.
    Z. Zhang, D.L. Chen, Scr. Mater. 54, 1321–1326 (2006)CrossRefGoogle Scholar
  2. 2.
    K.M. Kumar, V. Kripesh, A.A.O. Tay, J. Alloy. Compd. 450, 229–237 (2008)CrossRefGoogle Scholar
  3. 3.
    L.C. Tsao, R.W. Wu, T. Cheng, K. Fan, R.S. Chen, Mater. Des. 50, 774–781 (2013)CrossRefGoogle Scholar
  4. 4.
    A.S.M.A. Haseeb, T.S. Leng, Intermetallics 19, 707–712 (2011)CrossRefGoogle Scholar
  5. 5.
    G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci. 21, 421–440 (2010)Google Scholar
  6. 6.
    J.C. Leong, L.C. Tsao, C.J. Fang, C.P. Chu, J. Mater. Sci. 22, 1443–1449 (2011)Google Scholar
  7. 7.
    L.C. Tsao, C.H. Huang, C.H. Chung, R.S. Chen, Mat. Sci. Eng. A 545, 194–200 (2012)CrossRefGoogle Scholar
  8. 8.
    R.W. Wu, L.C. Tsao, R.S. Chen, J. Mater. Sci. 26, 1858–1865 (2015)Google Scholar
  9. 9.
    Y. Li, X.C. Zhao, Y. Liu, Y. Wang, Y. Wang, J. Mater. Sci. 25, 3816–3827 (2014)Google Scholar
  10. 10.
    Y. Tang, G.Y. Li, Y.C. Pan, J. Alloy. Compd. 554, 195–203 (2013)CrossRefGoogle Scholar
  11. 11.
    A.K. Gain, Y.C. Chan, W.K. Yung, Microelectron. Reliab. 51, 975–984 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Tang, G.Y. Li, D.Q. Chen, Y.C. Pan, J. Mater. Sci. 25, 981–991 (2014)Google Scholar
  13. 13.
    Z.L. Li, L.X. Cheng, G.Y. Li, J.H. Huang, Y. Tang, J. Alloy. Compd. 697, 104–113 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Tang, Y.C. Pan, G.Y. Li, J. Mater. Sci. 24, 1587–1594 (2012)Google Scholar
  15. 15.
    Y. Tang, S.M. Luo, G.Y. Li, Z. Yang, C.J. Hou, J. Electron. Packag. 140, 011003 (2018)CrossRefGoogle Scholar
  16. 16.
    K.S. Kim, S.H. Huh, K. Suganuma, Mat. Sci. Eng. A 333, 106–114 (2002)CrossRefGoogle Scholar
  17. 17.
    S. Shang, A. Kunwar, Y. Wang, L. Qu, H. Ma, Y. Wang, J. Mater. Sci. 30, 2872–2887 (2019)Google Scholar
  18. 18.
    R. Huang, H. Ma, S. Shang, A. Kunwar, Y. Wang, H. Ma, J. Mater. Sci. 30, 4359–4369 (2019)Google Scholar
  19. 19.
    H. Ma, Y. Wang, J. Chen, A. Kunwar, H. Ma, Z. Ning, Vacuum 145, 103–111 (2017)CrossRefGoogle Scholar
  20. 20.
    R.W. Cahn, Nature 323, 668–669 (1986)CrossRefGoogle Scholar
  21. 21.
    D.Q. Yu, H.P. Xie, L. Wang, J. Alloy. Compd. 385, 119–125 (2004)CrossRefGoogle Scholar
  22. 22.
    D.Q. Yu, J. Zhao, L. Wang, J. Alloy. Compd. 376, 170–175 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringDalian University of TechnologyDalianChina
  2. 2.School of MicroelectronicsDalian University of TechnologyDalianChina

Personalised recommendations