Unconventional high permittivity and relaxor like anomaly in (Sr, Ce, Pr)TiO3 solid solution

  • Waqar-Haider-Khan
  • Amir Sohail Khan
  • Tauqeer Ahmad
  • Nikola NovakEmail author
  • Muneeb-Ur-Rahman
  • Xiao-Qiang Song
  • Ghulam Saddiq
  • Burhan UllahEmail author


In this study, non-stoichiometric solid solution, Sr1–1.5(x+y)CexPryTiO3 abbreviated as (Sr, Ce, Pr)TiO3 (with 0.05 ≤ x ≤ 0.35 and y = 0.05, sintered in N2/H2 with 99% N2 and 1% H2) were prepared via a conventional solid-state method. By introducing (Ce0.25Pr0.05)3+/4+ on the A-site, the structure symmetry of the ceramic could be reduced, confirming cubic to tetragonal phase transition. Using Rietveld refinement and electron diffraction (TEM), the tetragonal phase was assigned to P4/mmm space group which posses a center of symmetry (centrosymmetric tetragonal unit cell). A small opening of hysteresis loop at higher Ce doping is assumed to be a caused by defect dipoles and conductivity. The dielectric anomalies were observed in all compositions, therefore, we assume that they are not related to structural phase transition but rather to some conductivity processes.



This fundamental research work was supported by the Higher Education Commission of Pakistan under initial start-up research grant program (21-2106/SRGP/R&D/HEC/2018) and the European Union’s Horizon 2020 research and innovation program under the Marie Skłodow-ska-Curie Grant Agreement No. 778072 and the Slovenian Research Agency under program P1-0125.


  1. 1.
    K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593–3602 (1979)CrossRefGoogle Scholar
  2. 2.
    J.G. Bednorz, K.A. Müller, Phys. Rev. Lett. 52, 2289–2292 (1984)CrossRefGoogle Scholar
  3. 3.
    Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, J. Eur. Ceram. Soc. 34, 1755–1760 (2014)CrossRefGoogle Scholar
  4. 4.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Ceram. Int. 43, 12822–12827 (2017)CrossRefGoogle Scholar
  5. 5.
    S.V. Trukhanov, A.V. Trukhanov, L.V. Panina, V.G. Kostishyn, V.A. Turchenko, E.L. Trukhanova, A.V. Trukhanov, T.I. Zubar, V.M. Ivanov, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, D.S. Klygach, M.G. Vakhitov, P. Thakur, A. Thakur, Y. Yang, J. Magn. Magn. Mater. 466, 393–405 (2018)CrossRefGoogle Scholar
  6. 6.
    EU-Directive 2011/65/EU, Off. J. Eur. Union 2011; L 174:88Google Scholar
  7. 7.
    Z. Zou, X. Lan, W.Z. Lu, G.F. Fan, X. Wang, X.C. Wang, P. Fu, W. Lei, Ceram. Int. 42(14), 16387–16391 (2016)CrossRefGoogle Scholar
  8. 8.
    A.V. Trukhanov, S.V. Trukhanov, L.V. Panina, V.G. Kostishyn, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, V.A. Turchenko, M.M. Salem, A.M. Balagurov, J. Magn. Magn. Mater. 426, 487–496 (2017)CrossRefGoogle Scholar
  9. 9.
    S.V. Trukhanov, A.V. Trukhanov, M.M. Salem, E.L. Trukhanova, L.V. Panina, V.G. Kostishyn, M.A. Darwish, A.V. Trukhanov, T.I. Zubar, D.I. Tishkevich, V. Sivakov, D.A. Vinnik, S.A. Gudkova, C. Singh, Ceram. Int. 44, 21295–21302 (2018)CrossRefGoogle Scholar
  10. 10.
    X. Wang, Q. Hu, L. Li, X. Lu, J. Appl. Phys. 112, 044106 (2012)CrossRefGoogle Scholar
  11. 11.
    J. Rödel, W. Jo, K.T.P. Seifert, E.-M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153–1177 (2009)CrossRefGoogle Scholar
  12. 12.
    G.A. Rossetti Jr., A.G. Khachaturyan, Appl. Phys. Lett. 91, 072909 (2007)CrossRefGoogle Scholar
  13. 13.
    W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)CrossRefGoogle Scholar
  14. 14.
    A.A. Heitmann, G.A. Rossetti Jr., J. Am. Ceram. Soc. 97, 1661–1685 (2014)CrossRefGoogle Scholar
  15. 15.
    M.C. Ehmke, S.N. Ehrlich, J.E. Blendell, K.J. Bowman, J. Appl. Phys. 111, 124110 (2012)CrossRefGoogle Scholar
  16. 16.
    M. Acosta, N. Khakpash, T. Someya, N. Novak, W. Jo, H. Nagata, G.A. Rossetti, J. Rödel, Phys. Rev. B 91, 104108 (2015)CrossRefGoogle Scholar
  17. 17.
    C. Ma, H. Guo, S.P. Beckman, X. Tan, Phys. Rev. Lett. 109, 107602 (2012)CrossRefGoogle Scholar
  18. 18.
    Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 104, 124106 (2008)CrossRefGoogle Scholar
  19. 19.
    K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Durán, E. Martínez, J.A. Díaz, J.M. Siqueiros, J. Appl. Phys. 97, 104109 (2005)CrossRefGoogle Scholar
  21. 21.
    R. Ranjan, R. Hackl, A. Chandra, E. Schmidbauer, D. Trots, H. Boysen, Phys. Rev. B 76, 224109 (2007)CrossRefGoogle Scholar
  22. 22.
    F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)CrossRefGoogle Scholar
  23. 23.
    N. Zhong, P.H. Xiang, D.Z. Sun, X.L. Dong, Mater. Sci. Eng. B 116, 140–145 (2005)CrossRefGoogle Scholar
  24. 24.
    C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)CrossRefGoogle Scholar
  25. 25.
    C. Ang, Z. Yu, J. Appl. Phys. 91, 1487–1494 (2002)CrossRefGoogle Scholar
  26. 26.
    Z. Yu, C. Ang, L.E. Cross, Appl. Phys. Lett. 74, 3044–3046 (1999)CrossRefGoogle Scholar
  27. 27.
    A. Tkach, J.S. Amaral, V.S. Amaral, P.M. Vilarinho, J. Eur. Ceram. Soc. 37, 2391–2397 (2017)CrossRefGoogle Scholar
  28. 28.
    B. Ullah, W. Lei, X.Q. Song, X.H. Wang, W.Z. Lu, Ceram. Int. 43, 16376–16383 (2017)CrossRefGoogle Scholar
  29. 29.
    V.V. Lemanov, E.P. Smirnova, A.V. Sotnikov, M. Weihnacht, Appl. Phys. Lett. 77, 4205–4207 (2000)CrossRefGoogle Scholar
  30. 30.
    B. Ullah, W. Lei, X.Q. Song, X.H. Wang, W.Z. Lu, J. Alloys Compd. 728, 623–630 (2017)CrossRefGoogle Scholar
  31. 31.
    Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Liu, S. Zhang, J. Am. Ceram. Soc. 98, 476–482 (2015)CrossRefGoogle Scholar
  32. 32.
    Z. Yu, C. Ang, Appl. Phys. Lett. 80, 643–645 (2002)CrossRefGoogle Scholar
  33. 33.
    I.O. Troyanchuk, S.V. Trukhanov, H. Szymczak, K. Baerner, J. Phys. Condens. Matter 12, L155–L158 (2000)CrossRefGoogle Scholar
  34. 34.
    S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita, H. Szymczak, K. Bärner, J. Magn. Magn. Mater. 237, 276–282 (2001)CrossRefGoogle Scholar
  35. 35.
    R. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  36. 36.
    B. Ullah, W. Lei, Q.S. Cao, Z.Y. Zou, X.K. Lan, X.H. Wang, W.Z. Lu, J. Am. Ceram. Soc. 99, 3286–3292 (2016)CrossRefGoogle Scholar
  37. 37.
    M.J. Akhtar, Z.U.N. Akhtar, R.A. Jackson, C.R.A. Catlow, J. Am. Ceram. Soc. 78, 421–428 (1995)CrossRefGoogle Scholar
  38. 38.
    B. Ullah, M. Ur-Rahman, R. Khan, Zulfiqar. J. Mater. Sci. Mater. Electron. 30, 4572–4579 (2019)CrossRefGoogle Scholar
  39. 39.
    S.V. Trukhanov, J. Mater. Chem. 13, 347–352 (2003)CrossRefGoogle Scholar
  40. 40.
    V. Doroshev, V. Borodin, V. Kamenev, A. Mazur, T. Tarasenko, A. Tovstolytkin, S. Trukhanov, J. Appl. Phys. 104, 093909 (2008)CrossRefGoogle Scholar
  41. 41.
    B. Ullah, A. Sayyadi-Shahraki, A. Ullah, R. Khan, Ceram. Int. 45, 3634–3642 (2019)CrossRefGoogle Scholar
  42. 42.
    M.B. Smith, K. Page, T. Siegrist, P.L. Redmond, E.C. Walter, R. Seshadri, L.E. Brus, M.L. Steigerwald, J. Am. Chem. Soc. 130, 6955–6963 (2008)CrossRefGoogle Scholar
  43. 43.
    R. Khan, C.I.L. de Zulfiqar, T. Araujo, S.A. Khan, E. Khattak, A. Ahmed, B. Khan, G. Ullah, K. Khan, A. Safeen, S.A. Safeen, J. Raza, Mater. Sci. Mater. Electron. 30, 3396–3404 (2019)CrossRefGoogle Scholar
  44. 44.
    J. Tao, M. Mu, X. Wang, B. Ullah, F. Chen, K. An, H. Su, W. Lu, J. Mater. Sci. Mater. Electron. 28, 16888–16894 (2017)CrossRefGoogle Scholar
  45. 45.
    W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, X.A. Li, J. Alloys Compd. 784, 117–124 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Waqar-Haider-Khan
    • 1
  • Amir Sohail Khan
    • 1
  • Tauqeer Ahmad
    • 1
  • Nikola Novak
    • 2
    Email author
  • Muneeb-Ur-Rahman
    • 1
  • Xiao-Qiang Song
    • 3
    • 4
  • Ghulam Saddiq
    • 1
  • Burhan Ullah
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of PhysicsIslamia College PeshawarPeshawarPakistan
  2. 2.Department of Condensed Matter PhysicsJožef Stefan InstituteLjubljanaSlovenia
  3. 3.School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina
  4. 4.Key Lab of Functional Materials for Electronic Information (B)Ministry of EducationWuhanChina

Personalised recommendations