Advertisement

Experimental and numerical study on dynamic mechanical behaviors of low-silver lead-free solder under combined compression-shear loadings

  • Xiaoyan NiuEmail author
  • Cong Chen
  • Linlin Shen
  • Liangbiao Chen
  • Jiang Zhou
Article
  • 40 Downloads

Abstract

In this paper, the behaviors of low-silver lead-free solder Sn0.3Ag0.7Cu were studied by quasi-static and dynamic compression-shear tests and finite-element analysis. The quasi-static tests were performed on MTS-809 material tester, while the dynamic tests were carried out on a modified split Hopkinson pressure bar (SHPB) system that uses inclined cropped cylinders as incident and transmitter bars. The inclination angle, which is formed between the ends of the incident and transmitter bar, allows dynamic combined compression-shear loadings. Inclination angles from 0° to 45° were tested under the same strain rate of 2157 s−1. Experimental results show that a larger inclination angle results in lower normal stress amplitude but higher tangential stress, given the same strain rate. The effect of strain rate was further studied by fixing the inclination angle as 30°. When the strain rate is below 2445 s−1, the strain rate effect is limited. However, from 2445 to 2875 s−1, the strain rate effect becomes significant, not only in normal direction but also in tangential direction. The experimental findings on both inclination angle and strain rate were then simulated by finite element method using the Cowper–Symonds material model. It was found that the adopted material model is able to predict the same trending as experimental data, but an accurate prediction requires a more sophisticated material model.

Notes

Acknowledgements

This study was supported by National Natural Science Foundation of China (Grant No. 11502065), Key projects of science and technology research in Colleges and Universities of Hebei Province (Grant No. ZD2016146), and the Natural Science Foundation of Hebei Province (Grant No. A2019201338).

References

  1. 1.
    F. Sun, P. Hochstenbach, W.D. Van Driel, G.Q. Zhang, Microelectron. Reliab. 48(8–9), 1167–1170 (2008)CrossRefGoogle Scholar
  2. 2.
    R. Mayappan, N.A. Jasli, Materials Today: Proc. 5, 17553–17560 (2018)Google Scholar
  3. 3.
    S.F. Cheng, C.M. Huang, M. Pecht, Microelectron. Reliab. 75, 77–95 (2017)CrossRefGoogle Scholar
  4. 4.
    Z. Zhu, Y.C. Chan, Z. Chen, C.L. Gan, F.S. Wu, Mater. Sci. Eng. A 727, 160–169 (2018)CrossRefGoogle Scholar
  5. 5.
    R. Sayyadi, H. Naffakh-Moosavy, Mater. Sci. Eng. A 735, 367–377 (2018)CrossRefGoogle Scholar
  6. 6.
    A.E. Hammad, Microelectron. Reliab. 87, 133–141 (2018)CrossRefGoogle Scholar
  7. 7.
    M. Mustaf, J.C. Suhling, P. Lall, Microelectron. Reliab. 56, 136–147 (2016)CrossRefGoogle Scholar
  8. 8.
    F. Kraemer, M. Roellig, R. Metasch, J. Ahmar, K. Meier, S. Wiese, Microelectron. Reliab. 91, 251–256 (2018)CrossRefGoogle Scholar
  9. 9.
    Y. Sun, J. Liang, J.H. Xu, G. Wang, X. Li, J. Mater. Sci.: Mater. Electron. 19, 514–521 (2008)Google Scholar
  10. 10.
    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, J. Wei, Int. J. Mod. Phys. B 24, 267–275 (2010)CrossRefGoogle Scholar
  11. 11.
    H. Kolsky, Proc. Phys. Soc. B 62, 676–700 (1949)CrossRefGoogle Scholar
  12. 12.
    Y.L. Li, K.T. Ramesh, Int. J. Impact Eng. 34(4), 784–798 (2007)CrossRefGoogle Scholar
  13. 13.
    C. Zheng, F.C. Wang, X.W. Cheng, J.X. Liu, T.T. Liu, Z.X. Zhu, K.W. Yang, M.Q. Peng, D. Jin, Mater. Sci. Eng. A 658, 60–67 (2016)CrossRefGoogle Scholar
  14. 14.
    C. Elibol, M.F.X. Wagner, Mater. Sci. Eng. A 643, 194–202 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Dorogoy, D. Rittel, Mech. Mater. 112, 143–153 (2017)CrossRefGoogle Scholar
  16. 16.
    Z.J. Xu, X.Y. Ding, W.Q. Zhang, F.L. Huang, Int. J. Impact Eng. 101, 90–104 (2017)CrossRefGoogle Scholar
  17. 17.
    R. Tounsi, E. Markiewicz, G. Haugou, F. Chaari, B. Zouari, Int. J. Solids Struct. 80, 501–511 (2016)CrossRefGoogle Scholar
  18. 18.
    B. Hou, A. Ono, S. Abdennadher, S. Pattofatto, Y.L. Li, H. Zhao, Int. J. Solids Struct. 48, 687–697 (2011)CrossRefGoogle Scholar
  19. 19.
    B. Hou, S. Pattofatto, Y.L. Li, H. Zhao, Int. J. Solids Struct. 48, 698–705 (2011)CrossRefGoogle Scholar
  20. 20.
    D.N. Fang, Y.L. Li, H. Zhao, Acta Mech. Sin. 26(6), 837–846 (2010)CrossRefGoogle Scholar
  21. 21.
    H.R. Wang, C.Y. Cai, D.N. Chen, D.F. Ma, S.X. Wu, Mater. Sci. Eng. A 528, 6838–6843 (2011)CrossRefGoogle Scholar
  22. 22.
    L. Chen, I. Jan, C. Philip, M.D. Gilchrist, Int. J. Mech. Sci. 145, 9–23 (2018)CrossRefGoogle Scholar
  23. 23.
    L. Chen, C. Philip, M.D. Gilchrist, Mater. Today Commun. 16, 339–352 (2018)CrossRefGoogle Scholar
  24. 24.
    Z.W. Zhou, Z.H. Wang, L.M. Zhao, X.F. Shu, J. Exp. Mech. 27(4), 440–447 (2012). (in Chinese) Google Scholar
  25. 25.
    A.S.A. Sayed, R.J. Clifton, L. Hermann, Exp. Mech. 16(4), 127–132 (1976)CrossRefGoogle Scholar
  26. 26.
    J. Peirs, P. Verleysen, J. Degrieck, F. Coghe, Int. J. Impact Eng. 37(6), 703–714 (2010)CrossRefGoogle Scholar
  27. 27.
    W. Zhen, S.L. Xu, C. Cai, S.S. Hu, Chin. J. Theor. Appl. Mech. 44(1), 124–131 (2012). (in Chinese) Google Scholar
  28. 28.
    X.Y. Niu, [D]. Taiyuan University of Technology, 2009 (in Chinese)Google Scholar
  29. 29.
    F. Qin, T. An, N. Chen, J. Appl. Mech. 77(1), 011008 (2010)CrossRefGoogle Scholar
  30. 30.
    E.H. Wong, C.S. Selvanayagam, S.K.W. Seah, W.D. van Driel, J.F.J.M. Caers, X.J. Zhao, N. Owens, L.C. Tan, D.R. Frear, M. Leoni, Y.-S. Lai, C.-L. Yeh, Mater. Lett. 62, 3031–3034 (2008)CrossRefGoogle Scholar
  31. 31.
    X.Y. Niu, W. Li, G.X. Wang, X.F. Shu, J. Mater. Sci.: Mater. Electron. 26, 601–607 (2015)Google Scholar
  32. 32.
    A. Škrlec, J. Klemenc, Strojniški vestnik-J. Mech. Eng. 62(4), 220–230 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaoyan Niu
    • 1
    Email author
  • Cong Chen
    • 1
  • Linlin Shen
    • 1
  • Liangbiao Chen
    • 2
  • Jiang Zhou
    • 2
  1. 1.College of Civil Engineering and ArchitectureHebei UniversityBaodingChina
  2. 2.Department of Mechanical EngineeringLamar UniversityBeaumontUSA

Personalised recommendations