Advertisement

Stabilization of the morphotropic phase boundary in (1 − x)Bi0.5Na0.5TiO3–xBaTiO3 ceramics through two alternative synthesis pathways

  • A. Prado
  • L. Ramajo
  • J. Camargo
  • Adolfo del Campo
  • P. Öchsner
  • F. Rubio-Marcos
  • M. CastroEmail author
Article
  • 63 Downloads

Abstract

In this work, we report the influence of synthesis conditions on the (1 − x)Na0.5Bi0.5TiO3–xBaTiO3 (BNT–BT) system, obtained by the conventional solid-state reaction method with a mechanochemical activation step through two alternative synthesis routes on piezoelectric properties. Samples were characterized by X-ray diffraction (XRD), Raman microspectroscopy and scanning electron microscopy (SEM). It was confirmed that the stabilization of a morphotropic phase boundary (MPB) meaningfully improved the piezoelectric activity. Here, we report that the stabilization of the morphotropic phase boundary (MPB) region in the BNT–BT ceramic systems depended on the selected synthesis pathway. Indeed, samples prepared by the direct mechanochemical activation of all mixed BNT–BT reactants showed a correlation between dielectric and ferroelectric properties and a clear sequence in the permittivity values.

Notes

Acknowledgements

This work was supported by CONICET, ANPCyT, and University of Mar del Plata (Argentina). F. Rubio-Marcos would like to acknowledge the support from MINECO for a ‘Ramon y Cajal’ contract co-financed by the European Social Fund (ref: RyC-2015-18626). F.R-M also acknowledges support from a 2018 Leonardo Grant for Researchers and Cultural Creators, BBVA Foundation.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    M. Cernea, L. Trupina, C. Dragoi, B.S. Vasile, R. Trusca, J. Alloys Compd. 515, 166 (2012)CrossRefGoogle Scholar
  2. 2.
    C.C. Jin, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, W.Z. Shi, J. Alloys Compd. 585, 185 (2014)CrossRefGoogle Scholar
  3. 3.
    W.S. Kang, J.H. Koh, J. Eur. Ceram. Soc. 35, 2057 (2015)CrossRefGoogle Scholar
  4. 4.
    M. Chandrasekhar, P. Kumar, Ceram. Int. 41, 5574 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Wang, Y. Li, Y. Gao, Z. Wang, L. Chen, Nano Energy 13, 687 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Takenaka, K. Maruyama, K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991)CrossRefGoogle Scholar
  7. 7.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, Y. Deng, J. Am. Ceram. Soc. 91, 3950 (2008)CrossRefGoogle Scholar
  8. 8.
    J. Camargo, L. Ramajo, F. Rubio-Marcos, M. Castro, Adv. Mater. Res. 975, 3 (2014)CrossRefGoogle Scholar
  9. 9.
    S.-T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  10. 10.
    W.-S. Kang, S.-K. Lee, J.-H. Koh, Ceram. Int. 41, 6925 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Dittmer, K.G. Webber, E. Aulbach, W. Jo, X. Tan, J. Rödel, Acta Mater. 61, 1350 (2013)CrossRefGoogle Scholar
  12. 12.
    R. Machado, D.A. Ochoa, V.B. dos Santos, E. Cerdeiras, L. Mestres, J.E. García, Mater. Lett. 183, 73 (2016)CrossRefGoogle Scholar
  13. 13.
    J.-F. Trelcat, C. Courtois, M. Rguiti, A. Leriche, P.-H. Duvigneaud, T. Segato, Ceram. Int. 38, 2823 (2012)CrossRefGoogle Scholar
  14. 14.
    K. Yan, S. Ren, M. Fang, X. Ren, Acta Mater. 134, 195 (2017)CrossRefGoogle Scholar
  15. 15.
    E. Aksel, J.L. Jones, Sensors 10, 1935 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Liu, H. Fan, S. Ke, X. Chen, J. Alloys Compd. 458, 504 (2008)CrossRefGoogle Scholar
  17. 17.
    M.-S. Yoon, N.H. Khansur, S.-C. Ur, Ceram. Int. 36, 1265 (2010)CrossRefGoogle Scholar
  18. 18.
    W. Bai, P. Li, L. Li, J. Zhang, B. Shen, J. Zhai, J. Alloys Compd. 649, 772 (2015)CrossRefGoogle Scholar
  19. 19.
    S. Sahoo, S. Hajra, M. De, R.N.P. Choudhary, Ceram. Int. 44, 4719 (2018)CrossRefGoogle Scholar
  20. 20.
    A. Prado-Espinosa, J. Camargo, A. del Campo, F. Rubio-Marcos, M. Castro, L. Ramajo, J. Alloys Compd. 739, 799 (2018)CrossRefGoogle Scholar
  21. 21.
    D. Lin, K.W. Kwok, Appl. Phys. A 97, 229 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Vögler, J.E. Daniels, K.G. Webber, J. Rödel, Scr. Mater. 136, 115 (2017)CrossRefGoogle Scholar
  23. 23.
    P. Palei, Sonia, P. Kumar, J. Phys. Chem. Solids 73, 827 (2012)CrossRefGoogle Scholar
  24. 24.
    G.-Z. Zang, J.-F. Wang, H.-C. Chen, W.-B. Su, C.-M. Wang, P. Qi, B.-Q. Ming, J. Du, L.-M. Zheng, S. Zhang, T.R. Shrout, Appl. Phys. Lett. 88, 212908 (2006)CrossRefGoogle Scholar
  25. 25.
    Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)CrossRefGoogle Scholar
  26. 26.
    D. Ghosh, A. Sakata, J. Carter, P. Thomas, H. Han, J.C. Nino, J.L. Jones, Adv. Funct. Mater. 24, 885 (2014)CrossRefGoogle Scholar
  27. 27.
    J. Shieh, K.C. Wu, C.S. Chen, Acta Mater. 55, 3081 (2007)CrossRefGoogle Scholar
  28. 28.
    S. Swain, S.K. Kar, P. Kumar, Ceram. Int. 41, 10710 (2015)CrossRefGoogle Scholar
  29. 29.
    U. Obilor, C. Pascual-Gonzalez, S. Murakami, I.M. Reaney, A. Feteira, Mater. Res. Bull. 97, 385 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Research in Materials Science and Technology (INTEMA)Mar del PlataArgentina
  2. 2.Electroceramic DepartmentInstituto de Cerámica y Vidrio, CSICMadridSpain
  3. 3.Department of Materials Science and EngineeringFriedrich Alexander Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations