Advertisement

Investigation of microstructure and dielectric properties of LaMnO3 doped BaTiO3 ceramics

  • Jinlun Yang
  • Haijun MaoEmail author
  • Xingyu Chen
  • Weijun ZhangEmail author
Article
  • 20 Downloads

Abstract

The microstructure and dielectric properties of LaMnO3 (LM) doped BaTiO3 (BT) ceramics have been investigated. By adding LM, (1–x)BT-xLM (x = 0–0.5) ceramics keep in a single-phase solid-solution state, but gradually transform from tetragonal structure to pseudocubic one, and much denser microstructure is obtained. As for dielectric properties, when x ≤ 0.1, the Curie temperature of BT-LM shifts to a lower temperature and the permittivity maximum is lowered with the increase of LM content, which are attributed to the introduction of La2O3 and the degradation of tetragonality, respectively. When x > 0.1, BT–LM presents a typical relaxation behavior. Colossal permittivity appears as x reaches 0.4, which is related to large number of giant electron-pinned defect-dipoles (\({\text{Mn}}^{4 + } \cdot 2e - V_{\text{O}}^{ \cdot \cdot }\)) and existence of grain-boundary segregation. Detailed analyses show that 0.5BT–0.5LM possesses the highest permittivity maximum (41,683) and widest temperature range (– 42 to 300 °C) with permittivity larger than pure BT at 100 kHz. Therefore, 0.5BT–0.5LM can be a very promising candidate as colossal permittivity material.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Grant No. 51702363).

References

  1. 1.
    L. Chen, H. Wang, P. Zhao, C. Zhu, Z. Cai, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 4178 (2019)CrossRefGoogle Scholar
  2. 2.
    X. Li, Y. Pu, Y. Wang, Y. Cui, X. Zhu, Z. Dong, Mater. Lett. 196, 153 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Chen, K. Hui, H. Wang, P. Zhao, L. Li, X. Wang, J. Eur. Ceram. Soc. 39, 3710 (2019)CrossRefGoogle Scholar
  4. 4.
    M. Liu, H. Hao, W. Chen, D. Zhou, M. Appiah, B. Liu, M. Cao, Z. Yao, H. Liu, Z. Zhang, Ceram. Int. 42, 379 (2016)CrossRefGoogle Scholar
  5. 5.
    L. Li, J. Li, N. Zhang, H. Zheng, Z. Cai, T. Lu, Ceram. Int. 44, 894 (2018)CrossRefGoogle Scholar
  6. 6.
    W. Chen, H. Hao, Y. Yang, C. Chen, M. Appiah, Z. Yao, M. Cao, Z. Yu, H. Liu, Ceram. Int. 43, 8449 (2017)CrossRefGoogle Scholar
  7. 7.
    A. Zeb, S.J. Milne, J. Mater. Sci: Mater. Electron. 26, 9243 (2015)Google Scholar
  8. 8.
    H. Ogihara, C.A. Randall, S. Trolier-McKinstry, J. Am. Ceram. Soc. 92, 110 (2009)CrossRefGoogle Scholar
  9. 9.
    Q. Zhang, Z. Li, F. Li, Z. Xu, S. Zhang, J. Am. Ceram. Soc. 94, 4335 (2011)CrossRefGoogle Scholar
  10. 10.
    R. Muhammad, Y. Iqbal, Ceram. Int. 42, 19413 (2016)CrossRefGoogle Scholar
  11. 11.
    X. Zhao, Z. Zhou, R. Liang, F. Liu, X. Dong, Ceram. Int. 43, 9060 (2017)CrossRefGoogle Scholar
  12. 12.
    X. Liu, R. Hong, C. Tian, J. Mater. Sci: Mater. Electron. 20, 323 (2008)Google Scholar
  13. 13.
    D.C. Arnold, IEEE. T. Ultrason. Ferroelectr. 62, 62 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Wu, M. Tian, Y. Guo, Q. Zheng, L. Luo, D. Lin, J. Mater. Sci. Mater. Electron. 26, 978 (2014)CrossRefGoogle Scholar
  15. 15.
    M.M. Vijatović, B.D. Stojanović, J.D. Bobić, T. Ramoska, P. Bowen, Ceram. Int. 36, 1817 (2010)CrossRefGoogle Scholar
  16. 16.
    L. Chen, H. Wang, P. Zhao, Z. Shen, C. Zhu, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 2781 (2019)Google Scholar
  17. 17.
    P. Dhak, M.K. Adak, D. Dhak, Mod. Phys. Lett. B 30, 12 (2016)CrossRefGoogle Scholar
  18. 18.
    D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, D. Johnson, J. Am. Ceram. Soc. 96, 2197 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. Sung, J. Kim, J. Cho, T. Song, M. Kim, T. Park, Appl. Phys. Lett. 98, 012902 (2011)CrossRefGoogle Scholar
  20. 20.
    Q. Li, Z. Yao, L. Ning, S. Gao, B. Hu, G. Dong, H. Fan, Ceram. Int. 44, 2782 (2018)CrossRefGoogle Scholar
  21. 21.
    Y. Sung, J. Kim, J. Cho, T. Song, M. Kim, H. Chong, T. Park, D. Do, S. Kim, Appl. Phys. Lett. 96, 022901 (2010)CrossRefGoogle Scholar
  22. 22.
    X.S. Qiao, X.M. Chen, H.L. Lian, W.T. Chen, J.P. Zhou, P. Liu, J. Am. Ceram. Soc. 99, 198 (2016)CrossRefGoogle Scholar
  23. 23.
    C.-Y. Chang, R.-L. Wang, C.-Y. Huang, J. Mater. Res. 27, 2937 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.A. Huang, B. Lu, D.D. Li, Z.H. Tang, Y.B. Yao, T. Tao, B. Liang, S.G. Lu, Ceram. Int. 43, 16462 (2017)CrossRefGoogle Scholar
  25. 25.
    A. Ianculescu, Z.V. Mocanu, L.P. Curecheriu, L. Mitoseriu, L. Padurariu, R. Truşcă, J. Alloys Compd. 509, 10040 (2011)CrossRefGoogle Scholar
  26. 26.
    M. Ganguly, S.K. Rout, T.P. Sinha, S.K. Sharma, H.Y. Park, C.W. Ahn, I.W. Kim, J. Alloys Compd. 579, 473 (2013)CrossRefGoogle Scholar
  27. 27.
    K. Madhan, R. Thiyagarajan, C. Jagadeeshwaran, A. Paul Blessington Selvadurai, V. Pazhanivelu, K. Aravinth, W. Yang, R. Murugaraj, J. Sol-gel. Sci. Technol. 88, 584 (2018)CrossRefGoogle Scholar
  28. 28.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Nageri, V. Kumar, Mater. Chem. Phys. 213, 400 (2018)CrossRefGoogle Scholar
  30. 30.
    M.S. Alkathy, A. Hezam, K.S.D. Manoja, J. Wang, C. Cheng, K. Byrappa, K.C.J. Raju, J. Alloys Compd. 762, 49 (2018)CrossRefGoogle Scholar
  31. 31.
    M.S. Abdel-wahab, A. Jilani, A. Alshahrie, A.H. Hammad, J. Mater. Sci. Mater. Electron. 29, 3056 (2017)CrossRefGoogle Scholar
  32. 32.
    W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821 (2013)CrossRefGoogle Scholar
  33. 33.
    Z. Wang, M. Cao, Z. Yao, Q. Zhang, Z. Song, W. Hu, Q. Xu, H. Hao, H. Liu, Z. Yu, J. Eur. Ceram. Soc. 34, 1755 (2014)CrossRefGoogle Scholar
  34. 34.
    P. Ren, J. He, X. Wang, M. Sun, H. Zhang, G. Zhao, Scr. Mater. 146, 110 (2018)CrossRefGoogle Scholar
  35. 35.
    L. Li, T. Lu, N. Zhang, J. Li, Z. Cai, J. Mater. Chem. C 6, 2283 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Aerospace Science and EngineeringNational University of Defense TechnologyChangshaChina

Personalised recommendations