Eu3+ and Cu2+ ions doped ZnS microspheres emission in the yellow–orange region

  • C. K. Krishna Sagar
  • P. Sajan
  • M. Junaid BushiriEmail author


Photoluminescence (PL) emission properties of hydrothermally synthesized zinc sulfide (ZnS) and doped (Cu2+, Eu3+, Cu2+ and Eu3+) zinc sulfide microspheres were studied. The samples were characterized by X‐ray diffraction, energy‐dispersive X‐ray analysis, field emission scanning electron microscopy, ultraviolet–visible and photoluminescence spectrophotometers. Hydrothermally synthesized ZnS microspheres give a broad emission in the 405–750 nm range. The quenching of broad PL intensity was observed in the Cu2+ ions and Eu3+ ions separately doped ZnS samples. ZnS microspheres codoped with Eu3+ and Cu2+ ions gives narrow and enhanced yellow–orange emission (530–650 nm) that desired for the bioimaging applications and fabrication of white light-emitting sources.



Krishna Sagar C. K. thanks the University Grants Commission (UGC), Government of India, for financial support provided in the form of Basic Scientific Research (BSR) Fellowship in Science. The authors acknowledge Professor M. K. Jayaraj, Nanophotonics and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology (CUSAT), for providing XRD measurements under the Department of Science and Technology nano mission initiative program. The authors also thank Department of Science and Technology-Fund for Improvement of Science and Technology infrastructure (DST‐FIST) for providing the financial support for acquiring FESEM facility and DST PURSE for acquiring EDX facility at the Department of Physics, CUSAT.


  1. 1.
    D. Ma, R. Liu, Y. Qiu, L. Duan, J. Mater. Chem. C 6, 5630 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Wen, N. Liu, S. Wang, H. Zhang, W. Zhao, Z. Yang, Y. Wang, J. Su, L. Li, F. Long, Z. Zou, Y. Gao, Opt. Express 24, 23419 (2016)CrossRefGoogle Scholar
  3. 3.
    G. Ren, L. Yu, B. Zhu, M. Tang, F. Chai, C. Wang, Z. Su, RSC Adv. 8, 16095 (2018)CrossRefGoogle Scholar
  4. 4.
    M.A. Majid, A.A. Al-Jabr, H.M. Oubei, M.S. Alias, D.H. Anjum, T.K. Ng, B.S. Ooi, Electron. Lett. 51, 1102 (2015)CrossRefGoogle Scholar
  5. 5.
    S.K. Kailasa, S. Ha, S.H. Baek, L.M.T. Phan, S. Kim, K. Kwak, T.J. Park, Mater. Sci. Eng. C 98, 834 (2019)CrossRefGoogle Scholar
  6. 6.
    J.K. Sheu, F.B. Chen, Y.C. Wang, C.C. Chang, S.H. Huang, C.N. Liu, M.L. Lee, Opt. Express A 23, 232 (2015)CrossRefGoogle Scholar
  7. 7.
    J.K. Park, M.A. Lim, C.H. Kim, H.D. Park, Appl. Phys. Lett. 82, 683 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Dhara, P.K. Giri, Nanoscale Res. Lett. 6, 320 (2011)CrossRefGoogle Scholar
  9. 9.
    R. Sarkar, C.S. Tiwary, P. Kumbhakar, S. Basu, A.K. Mitra, Physica E 40, 3115 (2008)CrossRefGoogle Scholar
  10. 10.
    P. Kumbhakar, S. Biswas, P. Pandey, C.S. Tiwary, P. Kumbhakar, Nanoscale 11, 2017 (2019)CrossRefGoogle Scholar
  11. 11.
    O.L. Stroyuk, V.M. Dzhagan, V.V. Shvalagin, S.Y. Kuchmiy, J. Phys. Chem. C 114, 220 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Yang, M. Lu, D. Xu, D. Yuan, G. Zhou, Appl. Phys. A 73, 455 (2001)CrossRefGoogle Scholar
  13. 13.
    A.B. Djurisic, Y.H. Leung, K.H. Tam, Appl. Phys. Lett. 88, 103107 (2006)CrossRefGoogle Scholar
  14. 14.
    K.S.C. Kuttykrishnan, J.B. Mohammed, Luminescence 33, 675 (2018)CrossRefGoogle Scholar
  15. 15.
    P. Sajan, R. Vinod, M.J. Bushiri, J. Lumin. 158, 110 (2015)CrossRefGoogle Scholar
  16. 16.
    S.M. Liu, H.Q. Guo, Z.H. Zhang, F.Q. Liu, Z.G. Wang, Chin. Phys. Lett. 17, 609 (2000)CrossRefGoogle Scholar
  17. 17.
    S. Sapra, A. Prakash, A. Ghangrekar, N. Periasamy, D.D. Sarma, J. Phys. Chem. B 109, 1663 (2005)CrossRefGoogle Scholar
  18. 18.
    A.K. Kole, P. Kumbhakar, U. Chatterjee, Appl. Phys. Lett. 100, 013103 (2012)CrossRefGoogle Scholar
  19. 19.
    J.Z. Liu, P.X. Yan, G.H. Yue, J.B. Chang, D.M. Qu, R.F. Zhuo, J. Phys. D 39, 2352 (2006)CrossRefGoogle Scholar
  20. 20.
    P. Sajan, R.S. Jayasree, S. Agouram, M.J. Bushiri, Luminescence 31, 544 (2016)CrossRefGoogle Scholar
  21. 21.
    H.M. Xiong, Adv. Mater. 25, 5329 (2013)CrossRefGoogle Scholar
  22. 22.
    V.D. Mote, Y. Purushotham, B.N. Dole, J. Theor. Appl. Phys. 6, 6 (2012)CrossRefGoogle Scholar
  23. 23.
    A.K. Kole, P. Kumbhakar, Res. Phys. 2, 150 (2012)Google Scholar
  24. 24.
    T.T.Q. Hoa, N.D. The, S. McVitie, N.H. Nama, L.V. Vu, T.D. Canh, N.N. Long, Opt. Mater. 33, 308 (2011)CrossRefGoogle Scholar
  25. 25.
    Y. Luo, G. Duan, M. Ye, Y. Zhang, G. Li, J. Phys. Chem. C 112, 2349 (2008)CrossRefGoogle Scholar
  26. 26.
    Q.S. Huang, D.Q. Dong, J.P. Xu, X.S. Zhang, H.M. Zhang, L. Li, Chin. Phys. Lett. 27, 057306 (2010)CrossRefGoogle Scholar
  27. 27.
    G. Blasse, A. Bril, W.C. Nieuwpoort, J. Phys. Chem. Solids 27, 1587 (1966)CrossRefGoogle Scholar
  28. 28.
    M. Wang, L. Sun, X. Fu, C. Liao, C. Yan, Solid State Commun. 115, 493 (2000)CrossRefGoogle Scholar
  29. 29.
    S. Sambasivam, B. Sathyaseelan, D. Raja Reddy, B.K. Reddy, C.K. Jayasankar, Spectrochim. Acta A 71, 1503 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Nano Functional Materials Laboratory, Department of PhysicsCochin University of Science and TechnologyCochinIndia
  2. 2.Department of PhysicsThunchan Memorial Government CollegeMalappuramIndia

Personalised recommendations