Advertisement

I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal

  • Xin Lu
  • Gangqiang ZhuEmail author
  • Rongxin Zhang
  • Shiping Li
  • Longkai Pan
  • Junli Nie
  • Fei Rao
Article
  • 26 Downloads

Abstract

Bi2WO6 is a widely used photocatalyst, which has a good visible light response owing to the narrow band gap. But in the process of photocatalytic reactions, the combination of electrons and holes has a significant effect on the photocatalytic activity. In this work, I-doped Bi2WO6 microflowers were prepared by a simple one-step hydrothermal method. The microflower has a large surface area, which can be conducive to the adsorption of pollutants, degrading Rhodamine B and removal of NO effectively. The structure, as well as optical properties of the I-doped Bi2WO6 microflowers have been characterized by a series of techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), and UV–vis diffuse reflectance spectroscopy. According to the results of UV–vis spectra, the I-doped Bi2WO6 microflowers are found demonstrating a significantly enhanced visible light absorption. The photocurrent and photoluminescence spectra indicate an increased separation rate for the I-doped Bi2WO6 photocatalyst of the photo-generated electron–hole pairs. Under visible-light irradiation, the S3 I-doped Bi2WO6 photocatalyst shows the photocatalytic efficiency about 97.6% and 50.0% for Rhodamine B and NO, respectively.

Notes

Acknowledgments

This work was supported by the Student’s Platform for Innovation and Entrepreneurship Training Program Foundation (No. 1301070014).

References

  1. 1.
    Y.F. Jia, S.P. Li, J.Z. Gao, G.Q. Zhu, F.C. Zhang, X.J. Shi, Y. Huang, C.L. Liu, Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal NO. Appl. Catal. B: Environ. 240, 241–252 (2019)CrossRefGoogle Scholar
  2. 2.
    P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93, 267–300 (1993)CrossRefGoogle Scholar
  3. 3.
    M. Hojamberdiev, K. Katsumata, K. Morita, S. Bilmes, N. Matsushita, K. Okada, One-step hydrothermal synthesis and photocatalytic performance of ZnWO4/Bi2WO6 composite photocatalysts for efficient degradation of acetaldehyde under UV light irradiation. Appl. Catal. A 457, 12–20 (2013)CrossRefGoogle Scholar
  4. 4.
    G.Q. Zhu, J. Liang, M. Hojamberdiev, S.A. Bilmes, X.M. Wei, P. Liu, J.P. Zhou, Ethylenediamine (EDA)—assisted hydrothermal synthesis of nitrogen-doped Bi2WO6 powders. Mater. Lett. 122, 216–219 (2014)CrossRefGoogle Scholar
  5. 5.
    L.B. Xiao, R.B. Lin, J. Wang, C. Cui, J.Y. Wang, Z.Q. Li, A novel hollow-hierarchical structured Bi2WO6 with enhanced photocatalytic activity for CO2 photoreduction. J. Colloid Interface Sci. 523, 151–158 (2018)CrossRefGoogle Scholar
  6. 6.
    K. Li, B. He, J.C. Liu, H.L. Zhang, R.R. Zhang, R.X. Liu, Y.F. Song, S.J. Zhang, Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids. Appl. Catal. A-Gen. 582, 117106–117114 (2019)CrossRefGoogle Scholar
  7. 7.
    M. Afif, U. Sulaeman, A. Riapanitra, R. Andreas, S. Yin, Use of Mn doping to suppress defect sites in Ag3PO4: applications in photocatalysis. Appl. Surf. Sci. 466, 352–357 (2019)CrossRefGoogle Scholar
  8. 8.
    X.Y. Zhao, X. Chen, J.C. Hu, Composition-dependent dual halide anion-doped bismuth terephthalate hybrids for enhanced pollutants removal. Microporous Mesoporous Mater. 244, 284–290 (2017)CrossRefGoogle Scholar
  9. 9.
    K.S. Yang, Y. Dai, B.B. Huang, M.H. Whangbo, Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem. Mater. 20, 6528–6534 (2008)CrossRefGoogle Scholar
  10. 10.
    Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)CrossRefGoogle Scholar
  11. 11.
    A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2011)CrossRefGoogle Scholar
  12. 12.
    H.D. Li, W.J. Li, F.Z. Wang, X.T. Liu, C.J. Ren, Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity. Appl. Catal. B: Environ. 217, 378–387 (2017)CrossRefGoogle Scholar
  13. 13.
    C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as High-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)CrossRefGoogle Scholar
  14. 14.
    C.J. Zhu, Y.Q. Liu, H.S. Cao, J.W. Sun, Q. Xu, L.P. Wang, Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light. Colloids Surf. A 568, 327–333 (2019)CrossRefGoogle Scholar
  15. 15.
    M. Hojamberdiev, Z.C. Kadirova, Y. Makinose, G.Q. Zhu, S. Emin, N. Matsushita, M. Hasegawa, K. Okada, Involving CeVO4 in improving the photocatalytic activity of a Bi2WO6/allophane composite for the degradation of gaseous acetaldehyde under visible light. Colloid. Surface. A 529, 600–612 (2017)CrossRefGoogle Scholar
  16. 16.
    H.G. Sun, Z.X. Tian, G.L. Zhou, J.M. Zhang, P. Li, Exploring the effects of crystal facet in Bi2WO6/BiOCl heterostructures on photocatalytic properties: a first-principles theoretical study. Appl. Surf. Sci. 469, 125–134 (2019)CrossRefGoogle Scholar
  17. 17.
    S. Jonjana, A. Phuruangrat, S. Thongtem, T. Thongtem, Synthesis, characterization and photocatalysis of heterostructure AgBr/Bi2WO6 nanocomposites. Mater. Lett. 216, 92–96 (2018)CrossRefGoogle Scholar
  18. 18.
    A. Phuruangrat, P. Dumrongrojthanath, S. Thongtem, T. Thongtem, Hydrothermal synthesis of I-doped Bi2WO6 for using as a visible-light-driven photocatalyst. Mater. Lett. 224, 67–70 (2018)CrossRefGoogle Scholar
  19. 19.
    X.M. Gao, F. Fu, W.H. Li, 3D hierarchical microspheres of Cu-doped Bi2WO6: synthesis, characterization, and enhanced photocatalytic activity. J. Mater. Eng. Perform. 23, 4342–4349 (2014)CrossRefGoogle Scholar
  20. 20.
    A. Kaur, S.K. Kansal, Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem. Eng. J. 302, 194–203 (2016)CrossRefGoogle Scholar
  21. 21.
    G.H. He, G.L. He, A.J. Li, X. Li, X.J. Wang, Y.P. Fang, Y.H. Xu, Synthesis and visible light photocatalytic behavior of WO3 (core)/Bi2WO6 (shell). J. Mol. Catal. A: Chem. 385, 106–111 (2014)CrossRefGoogle Scholar
  22. 22.
    Y. Lu, K. Zhao, Y. Zhao, S. Zhu, X. Yuan, M. Huo, Y. Zhang, Y. Qiu, Bi2WO6/TiO2/Pt nanojunction system: a UV–vis light responsive photocatalyst with high photocatalytic performance. Colloids Surf. A 481, 252–260 (2015)CrossRefGoogle Scholar
  23. 23.
    P. Ju, P. Wang, B. Li, H. Fan, S.Y. Ai, D. Zhang, Y. Wang, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430–437 (2014)CrossRefGoogle Scholar
  24. 24.
    J.Q. Yan, G.J. Wu, N.J. Guan, L.D. Li, Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl. Catal. B: Environ. 152–153, 280–288 (2014)CrossRefGoogle Scholar
  25. 25.
    F. Duan, Y. Zheng, M.Q. Chen, Flowerlike PtCl4/Bi2WO6 composite photocatalyst with enhanced visible-light-induced photocatalytic activity. Appl. Surf. Sci. 257, 1972–1978 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Wang, Y. Cai, L.Y. Song, W.Y. Nie, Y.F. Zhou, P.P. Chen, High efficient photocatalyst of spherical TiO2 particles synthesized by a sol-gel method modified with glycol Colloids. Surf. A Physicochem. Eng. Aspects 461, 195–201 (2014)CrossRefGoogle Scholar
  27. 27.
    N. Pugazhenthiran, P. Sathishkumar, S. Murugesan, S. Anandan, Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chem. Eng. J. 168, 1227–1233 (2011)CrossRefGoogle Scholar
  28. 28.
    G.Q. Zhu, M. Hojamberdiev, S.L. Zhang, S.T.U. Din, W. Yang, Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene. Appl. Surf. Sci. 467–468, 968–978 (2019)CrossRefGoogle Scholar
  29. 29.
    H. Wang, J.M. Song, H. Zhang, F. Gao, S.J. Zhao, H.Q. Hu, Controlled synthesis of three-dimensional hierarchical Bi2WO6 microspheres with optimum photocatalytic activity. Mater. Res. Bull. 47, 315–320 (2012)CrossRefGoogle Scholar
  30. 30.
    L.S. Zhang, W.Z. Wang, Z.G. Chen, L. Zhou, H.L. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem. 17, 2526–2532 (2007)CrossRefGoogle Scholar
  31. 31.
    F. Rao, G.Q. Zhu, M. Hojamberdiev, W.B. Zhang, S.P. Li, J.Z. Gao, F.C. Zhang, Y.H. Huang, Y. Huang, Uniform Zn2+-doped BiOI microspheres assembled by ultrathin nanosheets with tunable oxygen vacancies for super-stable removal of NO. J. Phys. Chem. C 123, 16268–16280 (2019)CrossRefGoogle Scholar
  32. 32.
    W.J. He, Y.J. Sun, G.M. Jiang, H.W. Huang, X.M. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway. Appl. Catal. B-Environ. 232, 340–347 (2018)CrossRefGoogle Scholar
  33. 33.
    W.C. Huo, X.A. Dong, J.Y. Li, M. Liu, X.Y. Liu, Y.X. Zhang, F. Dong, Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem. Eng. J. 361, 129–138 (2019)CrossRefGoogle Scholar
  34. 34.
    Y.L. Wei, X.M. Wei, S.S. Guo, Y.H. Huang, G.Q. Zhu, J.M. Zhang, The effects of Br dopant on the photo-catalytic properties of Bi2WO6. Mater. Sci. Eng., B 206, 79–84 (2016)CrossRefGoogle Scholar
  35. 35.
    G.Q. Zhu, S.P. Li, J.Z. Gao, F.C. Zhang, C.L. Liu, Q.Z. Wang, M. Hojamberdiev, Constructing a 2D/2D Bi2O2CO0/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl. Surf. Sci. 493, 913–925 (2019)CrossRefGoogle Scholar
  36. 36.
    J.D. Hu, D.Y. Chen, Z. Mo, N.J. Li, Q.F. Xu, H. Li, J.H. He, H. Xu, J.M. Lu, Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew. Chem. Int. Edit. 131(7), 2095–2099 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China
  2. 2.Science and Technology on Thermostructural Composite Materials Laboratory, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations