Enhancement in the adhesion properties of polycarbonate surfaces through chemical functionalization with organosilicon coupling agents

  • Jin Woong Lee
  • Jun Hyuk HeoEmail author
  • Byoungsang Lee
  • Hui Hun Cho
  • Taekyung KimEmail author
  • Jung Heon LeeEmail author


Although polycarbonate (PC) materials are well known to have poor adhesion to other surfaces, few studies have been conducted on the improvement of their adhesive properties via surface chemical functionalization. Herein, we report the enhancement in the adhesion properties of PC by adapting two silane coupling agents, namely (3-glycidoxypropyl) methyldiethoxysilane (GPTMS) and (3-aminopropyl) trimethoxysilane (APTMS), on the surface. We tested the adhesion with an epoxy-based adhesive consisting of bisphenol A diglycidyl ether (BADGE) and trientine (trien). The chemical interaction between the amine groups of the hardener (trien) and the epoxy rings of an epoxy-functionalized PC (PC-GPTMS) sample surface was observed with X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. We found that the amine-functionalized PC (PC-APTMS) can also form crosslinked polymeric structures with the BADGE after curing. Compared to the bare PC, an increase in the shear strength of up to 168% and 163% was observed from the PC-GPTMS and PC-APTMS, respectively. In contrast, the ultraviolet-ozone (UVO) and O2 plasma-treated samples showed a negligible increase in adhesion strength. These results strongly suggest that the chemical functionalization of PC substrates with coupling agents significantly enhances the adhesion properties of PCs.



This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A6A1A03033215) and GRRC program of Gyeonggi Province (Grant No. GRRC Sungkyunkwan 2017-B01).

Supplementary material

10854_2019_2128_MOESM1_ESM.docx (138 kb)
Supplementary material 1 (DOCX 137 kb)


  1. 1.
    Z. Geretovszky, B. Hopp, I. Bertóti, I.W. Boyd, Photodegradation of polycarbonate under narrow band irradiation at 172 nm. Appl. Surf. Sci. 186, 85–90 (2002)CrossRefGoogle Scholar
  2. 2.
    P. Saini, V. Choudhary, K.N. Sood, S.K. Dhawan, Electromagnetic interference shielding behavior of polyaniline/graphite composites prepared by in situ emulsion pathway. J. Appl. Polym. Sci. 113, 3146–3155 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Dinelli, E. Fabbri, F. Bondioli, TiO2–SiO2 hard coating on polycarbonate substrate by microwave assisted sol–gel technique. J. Sol-Gel. Sci. Technol. 58, 463–469 (2011)CrossRefGoogle Scholar
  4. 4.
    G. Schottner, Hybrid sol − gel-derived polymers: applications of multifunctional materials. Chem. Mater. 13, 3422–3435 (2001)CrossRefGoogle Scholar
  5. 5.
    C. Charitidis, A. Laskarakis, S. Kassavetis, C. Gravalidis, S. Logothetidis, Optical and nanomechanical study of anti-scratch layers on polycarbonate lenses. Superlattice. Microst. 36, 171–179 (2004)CrossRefGoogle Scholar
  6. 6.
    B. Goss, Bonding glass and other substrates with UV curing adhesives. Int. J. Adhes. Adhes. 22, 405–408 (2002)CrossRefGoogle Scholar
  7. 7.
    J.D. Mackenzie, E. Bescher, Some factors governing the coating of organic polymers by sol–gel derived hybrid materials. J. Sol–Gel Sci. Technol. 27, 7–14 (2003)CrossRefGoogle Scholar
  8. 8.
    J.H. Lee, J.-S. Cho, S.-K. Koh, D. Kim, Improvement of adhesion between plastic substrates and antireflection layers by ion-assisted reaction. Thin Solid Films 449, 147–151 (2004)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, Y. Wu, S. He, D. Yang, Structural characterization of sol–gel composites using TEOS/MEMO as precursors. Surf. Coat. Tech. 201, 6051–6058 (2007)CrossRefGoogle Scholar
  10. 10.
    L.Y.L. Wu, L. Boon, Z. Chen, X.T. Zeng, Adhesion enhancement of sol–gel coating on polycarbonate by heated impregnation treatment. Thin Solid Films 517, 4850–4856 (2009)CrossRefGoogle Scholar
  11. 11.
    J.M. Grace, L.J. Gerenser, Plasma treatment of polymers. J. Dispersion Sci. Technol. 24, 305–341 (2003)CrossRefGoogle Scholar
  12. 12.
    U. Schulz, Review of modern techniques to generate antireflective properties on thermoplastic polymers. Appl. Opt. 45, 1608–1618 (2006)CrossRefGoogle Scholar
  13. 13.
    Y.H. Lee, T. Park, I. Chang, S. Ji, S.W. Cha, Metal-coated polycarbonate monopolar plates for portable fuel cells. Int. J. Hydrogen Energy 37, 18471–18475 (2012)CrossRefGoogle Scholar
  14. 14.
    K.T. Laitinen, H. Korhonen, J.T.T. Leskinen, A. Koistinen, R. Lappalainen, Improved multilayer coatings by combined use of electrochemical and ultra-short pulsed laser deposition techniques. Surf. Coat. Tech. 300, 58–66 (2016)CrossRefGoogle Scholar
  15. 15.
    E. Kraus, B. Baudrit, P. Heidemeyer, M. Bastian, O. Stoyanov, I. Starostina, Surface treatment with ultraviolet laser for adhesive bonding of polymeric materials. J. Adhes. 93, 204–215 (2017)CrossRefGoogle Scholar
  16. 16.
    A. Hofrichter, P. Bulkin, B. Drévillon, Plasma treatment of polycarbonate for improved adhesion. J. Vac. Sci. Technol., A 20, 245–250 (2002)CrossRefGoogle Scholar
  17. 17.
    D. Hegemann, H. Brunner, C. Oehr, Plasma treatment of polymers for surface and adhesion improvement. Nucl. Instrum. Methods Phys. Res. 208, 281–286 (2003)CrossRefGoogle Scholar
  18. 18.
    J.H. Kamps, C. Scheffler, F. Simon, R. van der Heijden, N. Verghese, Functional polycarbonates for improved adhesion to carbon fibre. Compos. Sci. Technol. 167, 448–455 (2018)CrossRefGoogle Scholar
  19. 19.
    J. Yang, J. Lv, M. Behl, A. Lendlein, D. Yang, L. Zhang, C. Shi, J. Guo, Y. Feng, Functionalization of polycarbonate surfaces by grafting PEG and zwitterionic polymers with a multicomb structure. Macromol. Biosci. 13, 1681–1688 (2013)CrossRefGoogle Scholar
  20. 20.
    N.W. Elshereksi, M. Ghazali, A. Muchtar, C.H. Azhari, Review of titanate coupling agents and their application for dental composite fabrication. Dent. Mater. J. 36, 539–552 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Zhang, B.-W. Li, L. Dong, H. Liu, W. Chen, Y. Shen, C.-W. Nan, Superior energy storage performances of polymer nanocomposites via modification of filler/polymer interfaces. Adv. Mater. Interfaces. 5, 1800096 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Safi, A. Zadhoush, M. Masoomi, Effects of chemical surface pretreatment on tensile properties of a single glass fiber and the glass fiber reinforced epoxy composite. Polym. Compos. 37, 91–100 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Kopietz, B. Wetzel, K. Friedrich, Flexural and fracture mechanical properties of in situ particulate reinforced organomineral hybrid resins modified by organofunctional silanes. Compos. Sci. Technol. 174, 169–175 (2019)CrossRefGoogle Scholar
  24. 24.
    L.-Y. Hong, T.-H. Yoon, H.-I. Ryoo, S.-H. Jung, D.-P. Kim, Functional SiO2–TiO2–PEG hybrid resin by direct chelation with catecholic compound. J. Sol–Gel Sci. Technol. 57, 279–286 (2011)CrossRefGoogle Scholar
  25. 25.
    Z. Geng, X. Yang, C. Boo, S. Zhu, Y. Lu, W. Fan, M. Huo, M. Elimelech, X. Yang, Self-cleaning anti-fouling hybrid ultrafiltration membranes via side chain grafting of poly(aryl ether sulfone) and titanium dioxide. J. Membr. Sci. 529, 1–10 (2017)CrossRefGoogle Scholar
  26. 26.
    C.D. Wanger, G.E. Muilenberg, in Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy, 1 st edn. (1979), 2nd edn. (1992). (Perkin-Elmer Corp., USA, 1979)Google Scholar
  27. 27.
    J.M. Lannon Jr., Q. Meng, Analysis of Polycarbonate (PC) by XPS. Surf. Sci. Spectra 6, 75–78 (1999)CrossRefGoogle Scholar
  28. 28.
    G. Socrates, Infrared and Raman characteristic group frequencies. Tables and charts, 3rd edn. (Wiley, Chichester, 2001)Google Scholar
  29. 29.
    J.H. Heo, J.W. Lee, B. Lee, H.H. Cho, B. Lim, J.H. Lee, Chemical effects of organo-silanized SiO2 nanofillers on epoxy adhesives. J. Ind. Eng. Chem. 54, 184–189 (2017)CrossRefGoogle Scholar
  30. 30.
    G. Beamson, D.T. Clark, N.W. Hayes, D.S.L. Law, V. Siracusa, A. Recca, High-resolution X-ray photoelectron spectroscopy of crystalline and amorphous poly(ethylene terephthalate): a study of biaxially oriented film, spin cast film and polymer melt. Polymer 37, 379–385 (1996)CrossRefGoogle Scholar
  31. 31.
    D.J. Plazek, Z.N. Frund Jr., Epoxy resins (DGEBA): the curing and physical aging process. J. Polym. Sci. B. 28, 431–448 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan University (SKKU)Suwon-siRepublic of Korea
  2. 2.SKKU Advanced Institute of Nanotechnology (SAINT)Sungkyunkwan University (SKKU)Suwon-siRepublic of Korea
  3. 3.Advanced Materials Technology Research CenterSungkyunkwan University (SKKU)Suwon-siRepublic of Korea
  4. 4.Department of Materials Science and EngineeringHongik UniversitySejongRepublic of Korea

Personalised recommendations