Short-circuit current density and fill factor improvement by optimizing In2O3:H and metal back reflector layers for p-i-n a-SiGe:H thin film solar cells

  • Xun Sun
  • Zhi Yang
  • Huey-Liang HwangEmail author


In this work, high efficiency p-i-n structure hydrogenated amorphous silicon germanium (a-SiGe:H) thin film solar cells were prepared via optimizing hydrogenated indium oxide In2O3:H (IOH) and silver/chromium/aluminum (Ag/Cr/Al) back reflector (BR) layers. Layer wise films including Al, Ag/Cr/Al and IOH/Ag/Cr/Al BR materials were fabricated into solar cells for improving short-circuit current density (Jsc) and fill factor (FF) which in turn enhanced output solar cell performance. Low resistivity, low carrier density and high mobility of IOH layers have been investigated with different water partial pressure (\({\text{P}}_{{{\text{H}}_{ 2} {\text{O}}}}\)). Jsc was enhanced by 13.4% with IOH/Ag/Cr/Al BR structure due to their excellent optoelectronic properties compared to the initial solar cells with Al only. The spectral response of external quantum efficiency at long wavelengths of 550–900 nm was enhanced significantly by adding Ag and Cr with Al as composite electrode. A massive gain in Jsc of 1.13 mA/cm2 was further improved by using optimal \({\text{P}}_{{{\text{H}}_{ 2} {\text{O}}}}\) with IOH compared to the one without this layer. High efficiency of 9.27% for a-SiGe:H solar cell was successfully fabricated with a high Jsc of 18.40 ± 0.03 mA/cm2 and FF of 69.48%.



This work was supported by National Natural Science Foundation of China (No. 61274051).


  1. 1.
    H. Tan, A. Jain, O. Voznyy, X. Lan, F.P. García de Arquer, J.Z. Fan, R. Quintero-Bermudez, M. Yuan, B. Zhang, Y. Zhao, F. Fan, P. Li, L.N. Quan, Y. Zhao, Z.-H. Lu, Z. Yang, S. Hoogland, E.H. Sargent, Science 355, 722–726 (2017)CrossRefGoogle Scholar
  2. 2.
    M. Que, L. Zhu, Y. Yang, J. Liu, P. Chen, W. Chen, X. Yin, W. Que, J. Power Sources 383, 42–49 (2018)CrossRefGoogle Scholar
  3. 3.
    P. Zhang, Z. Hu, Y. Wang, Y. Qin, W. Li, J. Wang, Nano-Micro Lett. 8(3), 232–239 (2016)CrossRefGoogle Scholar
  4. 4.
    G.H. Wang, C.Y. Shi, L. Zhao, R.D. Hu, L.L. Li, G. Wang, J.W. Chen, H.W. Diao, W.J. Wang, Thin Solid Films 552, 180–183 (2014)CrossRefGoogle Scholar
  5. 5.
    Z. Li, A.J. Letha, J.-F. Wei, M.-L. Lu, Y. Liu, H.-L. Hwang, Y. Zhang, Mater. Sci. Semicond. Procss. 75, 51–57 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Day, S. Senthilarasu, T.K. Mallick, Renew. Energy 132, 186–205 (2019)CrossRefGoogle Scholar
  7. 7.
    H. Tan, P. Babal, M. Zeman, A.H.M. Smets, Solar Energy Mater. Solar Cells 132, 597–605 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Eslamian, Nano-Micro Lett. 9, 3 (2017)CrossRefGoogle Scholar
  9. 9.
    M.J. de Wild-Scholten, Solar Energy Mater. Solar Cells 119, 296–305 (2013)CrossRefGoogle Scholar
  10. 10.
    P. Chen, P. Niu, L. Yu, J. Zhang, Q. Fan, G. Yang, X. Fu, G. Hou, Solar Energy Mater. Solar Cells 175, 41–46 (2018)CrossRefGoogle Scholar
  11. 11.
    D.P. Pham, S. Kim, A.H.T. Le, J. Park, J. Yi, J. Alloy. Compd. 762, 616–620 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Wang, C. Shi, L. Zhao, L. Mo, H. Diao, W. Wang, Thin Solid Films 659, 36–40 (2018)CrossRefGoogle Scholar
  13. 13.
    C. Ducros, H. Szambolics, F. Emieux, A. Pereira, Thin Solid Films 620, 10–16 (2016)CrossRefGoogle Scholar
  14. 14.
    A. Soman, A. Antony, Sol. Energy 162, 525–532 (2018)CrossRefGoogle Scholar
  15. 15.
    J. Cho, S.M. Iftiquar, D.P. Pham, J. Jung, J. Park, S. Ahn, A.H.T. Le, J.S. Kim, J. Yi, Thin Solid Films 639, 56–63 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Rivas, R. Rodríguez, M.E. Solano, Wave Motion 78, 68–82 (2018)CrossRefGoogle Scholar
  17. 17.
    Y.-S. Lin, S.-Y. Lien, C.-C. Wang, C.-Y. Liu, A. Nautiyal, D.-S. Wuu, P.-C. Tsai, C.-F. Chen, S.-J. Lee, J. Vac. Sci. Technol., A 30, 011302 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Wang, L. Zhao, H. Diao, W. Wang, Vacuum 89, 40–42 (2013)CrossRefGoogle Scholar
  19. 19.
    G.H. Wang, C.Y. Shi, L. Zhao, B.J. Yan, G. Wang, J.W. Chen, Z.C. Li, H.W. Diao, W.J. Wang, Thin Solid Films 534, 591–593 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Banerjee, S. Guha, J. Appl. Phys. 69, 1030–1035 (1991)CrossRefGoogle Scholar
  21. 21.
    A.M.K. Dagamseh, B. Vet, F.D. Tichelaar, P. Sutta, M. Zeman, Thin Solid Films 516, 7844–7850 (2008)CrossRefGoogle Scholar
  22. 22.
    J.W. Seong, K.H. Kim, Y.W. Beag, S.K. Koh, K.H. Yoon, J. Vac. Sci. Technol., A 22, 1139–1145 (2004)CrossRefGoogle Scholar
  23. 23.
    M. Que, W.X. Que, X.T. Yin, P. Chen, Y.W. Yang, J.X. Hu, B.Y. Yu, Y.P. Du, Nanoscale 8, 14432–14437 (2016)CrossRefGoogle Scholar
  24. 24.
    R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp, M.C.M. van de Sanden, Thin Solid Films 392, 226–230 (2001)CrossRefGoogle Scholar
  25. 25.
    C. Battaglia, L. Erni, M. Boccard, L. Barraud, J. Escarré, K. Söderström, G. Bugnon, A. Billet, L. Ding, M. Despeisse, F.-J. Haug, S.D. Wolf, C. Ballif, J. Appl. Phys. 109, 114501 (2011)CrossRefGoogle Scholar
  26. 26.
    Z. Chen, Y. Zhuo, W. Tu, Z. Li, X. Ma, Y. Pei, G. Wang, Opt. Express 26, 22123–22134 (2018)CrossRefGoogle Scholar
  27. 27.
    T. Koida, H. Fujiwara, M. Kondo, Solar Energy Mater. Solar Cells 93, 851–854 (2009)CrossRefGoogle Scholar
  28. 28.
    M. Boccard, N. Rodkey, Z.C. Holman, Energy Procedia 92, 297–303 (2016)CrossRefGoogle Scholar
  29. 29.
    M. Boccard, N. Rodkey, Z.C. Holman, in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016, pp. 2868–2870Google Scholar
  30. 30.
    K. Takashi, F. Hiroyuki, K. Michio, Appl. Phys. Express 1, 041501 (2008)CrossRefGoogle Scholar
  31. 31.
    B. Demaurex, S. De Wolf, A. Descoeudres, Z. Charles Holman, C. Ballif, Appl. Phys. Lett. 101, 171604 (2012)CrossRefGoogle Scholar
  32. 32.
    L. Barraud, Z.C. Holman, N. Badel, P. Reiss, A. Descoeudres, C. Battaglia, S. De Wolf, C. Ballif, Solar Energy Mater. Solar Cells 115, 151–156 (2013)CrossRefGoogle Scholar
  33. 33.
    X. Sun, Y. Liu, Z. Li, H.-L. Hwang, J. Mater. Sci. 30, 1993–1997 (2019)Google Scholar
  34. 34.
    M. Hu, X. Gao, J. Sun, L. Weng, F. Zhou, W. Liu, Appl. Surf. Sci. 258, 5683–5688 (2012)CrossRefGoogle Scholar
  35. 35.
    H. Scherg-Kurmes, S. Seeger, S. Körner, B. Rech, R. Schlatmann, B. Szyszka, Thin Solid Films 599, 78–83 (2016)CrossRefGoogle Scholar
  36. 36.
    T. Koida, H. Fujiwara, M. Kondo, J. Non-Cryst. Solids 354, 2805–2808 (2008)CrossRefGoogle Scholar
  37. 37.
    C.G. Van de Walle, Phys. Rev. Lett. 85, 1012–1015 (2000)CrossRefGoogle Scholar
  38. 38.
    H. Sai, T. Matsui, T. Koida, K. Matsubara, M. Kondo, S. Sugiyama, H. Katayama, Y. Takeuchi, I. Yoshida, Appl. Phys. Lett. 106, 213902 (2015)CrossRefGoogle Scholar
  39. 39.
    H. Scherg-Kurmes, S. Körner, S. Ring, M. Klaus, L. Korte, F. Ruske, R. Schlatmann, B. Rech, B. Szyszka, Thin Solid Films 594, 316–322 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, Department of Micro/Nano Electronics, School of Electronics, Information and Electrical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Centre for Nanotechnology, Materials Science, and MicrosystemsNational Tsing Hua UniversityHsinchuTaiwan, ROC

Personalised recommendations