Advertisement

Facile synthesis of molybdenum disulfide/poly (3,4-ethylenedioxythiophene) composite electrodes for high-performance flexible supercapacitors

  • Biao Zeng
  • Yan ChenEmail author
  • Jingge Bai
Article
  • 34 Downloads

Abstract

In the research of flexible microsupercapacitors, particular structure electrodes with favorable electrochemical performances are in high demand. Here we report the synthesis and characterization of nanocomposite by vapor phase polymerization of 3,4-ethylenedioxythiophene with molybdenum disulfide in the presence of an oxidizing agent. The effects of exfoliated molybdenum disulfide in common organic solvents are investigated on the electrochemical properties of molybdenum disulfide/poly(3,4-ethylenedioxythiophene) composites. It is found that molybdenum disulfide/poly(3,4-ethylenedioxythiophene) film prepared by isopropanol solvent assisted exfoliated molybdenum disulfide nanosheets exhibits a typical porous network structure and superior electrochemical performances. On account of synergetic effects between uniformly distributed molybdenum disulfide and PEDOT polymer, the hybrid film shows a high volumetric capacitance of 423.6 F/cm3 and good cycling stability with 92% of its initial charge after 5000 cycles. Moreover, flexible interdigitated micro-supercapacitor assembled by molybdenum disulfide/poly(3,4-ethylenedioxythiophene) electrodes is evaluated, which displays a volumetric capacitance of 15.32 F/cm3. The assembled flexible device shows a huge potential for application in flexible electronic devices.

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) (No. 51707015), Scientific Research Fund of Sichuan Provincial Education Department (No. 2018ZA0106), Sichuan Province Practice and Innovation Training Program for College Students (No. 201810621178, No. D1910621163), the Scientific Research Foundation of CUIT (No. KYTZ201702) and Chongqing Engineering Research Center of New Energy Storage Devices and Applications (No. KF20180202).

References

  1. 1.
    Y.F. An, Y.Y. Yang, Z. Hu, B.S. Guo, X.T. Wang, X. Yang, Q.C. Zhang, H.Y. Wu, H, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)CrossRefGoogle Scholar
  2. 2.
    A. Aphale, A. Chattopadhyay, K. Mahakalakar, P. Patra, Synthesis and electrochemical analysis of algae cellulose-polypyrrole-Graphene nanocomposite for supercapacitor electrode. J. Nanosci. Nanotechnol. 15, 6225–6229 (2015)CrossRefGoogle Scholar
  3. 3.
    D.D. Potphode, L. Sinha, P.M. Shirage, Redox additive enhanced capacitance: multi-walled carbon nanotubes/polyaniline nanocomposite based symmetric supercapacitors for rapid charge storage. Appl. Surf. Sci. 469, 162–172 (2019)CrossRefGoogle Scholar
  4. 4.
    A.A.K. Arani, H. Karami, G.B. Gharehpetian, M.S.A. Hejazi, Review of flywheel energy storage systems structures and applications in power systems and microgrids. Renew. Sust. Energy Rev. 69, 9–18 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sources 91, 37–50 (2000)CrossRefGoogle Scholar
  6. 6.
    J.H. Xing, P. Tao, Z.M. Wu, C.Y. Xing, X.P. Liao, S.X. Nie, Nanocellulose-graphene composites: a promising nanomaterial for flexible supercapacitors. Carbonhydr. Polym. 207, 447–459 (2019)CrossRefGoogle Scholar
  7. 7.
    S. Noh, T.H. Le, C.S. Park, S. Kim, Y. Kim, J.-J. Park, H. Yoon, Physical exfoliation of graphene and molybdenum disulfide sheets using conductive polyaniline: an efficient route for synthesizing unique, random-layered 3D ternary electrode materials. New J. Chem. 42, 17379–17388 (2018)CrossRefGoogle Scholar
  8. 8.
    D.Q. Li, W.Q. Zhou, Q.J. Zhou, G. Ye, T.Z. Wang, J. Wu, Y.N. Chang, J.K. Xu, Transparent 1T-MoS2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. Nanotechnology 28(39), 395401 (2017)CrossRefGoogle Scholar
  9. 9.
    J. Wang, Z. Wu, H. Yin, W. Li, Y. Jiang, Poly(3,4-ethylenedioxythiophene)/MoS2 nanocomposites with enhanced electrochemical capacitance performance. RSC Adv. 4, 56926–56932 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Lei, Z. Jiang, X. Lu, G. Nie, C. Wang, Synthesis of few-layer MoS2 nanosheetswrapped polyaniline hierarchical nanostructures for enhanced electrochemical capacitance performance. Electrochim. Acta 176, 149–155 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Tang, J. Wang, H. Yin, H. Zhao, D. Wang, Z. Tang, Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv. Mater. 27, 1117–1123 (2015)CrossRefGoogle Scholar
  12. 12.
    M.S. Raghu, K.Y. Kumar, S.R.T. Aravinda, B.P. Prasanna, M.K. Prashanth, Fabrication of polyaniline-few-layer MoS2 nanocomposite for high energy density supercapacitors. Polym. Bull. 75, 4359–4375 (2018)CrossRefGoogle Scholar
  13. 13.
    M.C. Liu, Y. Xu, Y.X. Hu, Q.Q. Yang, L.B. Kong, W.W. Liu, W.J. Niu, Y.L. Chueh, Electrostatically charged MoS2/graphene oxide hybrid composites for excellently electrochemical energy storage devices. ACS Appl. Mater. Interface 10, 35571–35579 (2018)CrossRefGoogle Scholar
  14. 14.
    D.Q. Li, D.H. Zhu, W.Q. Zhou, Q.J. Zhou, T.Z. Wang, G. Ye, L.J. Lv, J.K. Xu, Design and electrosynthesis of monolayered MoS2 and BF4 +-doped poly(3,4-ethylenedioxythiophene) nanocomposites for enhanced supercapacitive performance. J. Electroanal. Chem. 801, 345–353 (2017)CrossRefGoogle Scholar
  15. 15.
    F.X. Jiang, J.H. Xiong, W.Q. Zhou, C.C. Liu, L.Y. Wang, F. Zhao, H.X. Liu, J.K. Xu, Organic solvent assisted exfoliated MoS2 for the optimized thermoelectric performance of flexible PEDOT:PSS thin film. J. Mater. Chem. A 4, 5265–5273 (2016)CrossRefGoogle Scholar
  16. 16.
    Y. Chen, J.H. Xu, Y.W. Mao, Y.J. Yang, W.Y. Yang, S.B. Li, Electrochemical performance of graphene-polyethylenedioxythiophene nanocomposites. Mater. Sci. Eng. B 178, 1152–1157 (2013)CrossRefGoogle Scholar
  17. 17.
    S.M. Cao, L.Y. Shi, M. Miao, J.H. Fang, H.B. Zhao, X. Feng, Solution-processed flexible paper-electrode for lithium-ion batteries based on MoS2 nanosheets exfoliated with cellulose nanofibrils. Electrochim. Acta 298, 22–30 (2019)CrossRefGoogle Scholar
  18. 18.
    W.J. Wang, W. Lei, T.Y. Yao, X.F. Xia, W.J. Huang, Q.L. Hao et al., One-pot synthesis of graphene/SnO/PEDOT ternary electrode material for supercapacitors. Electrochim. Acta 108, 118–126 (2013)CrossRefGoogle Scholar
  19. 19.
    W.W. Chiu, J. Travas-Sejdic, R.P. Cooney, G.A. Bowmaker, Studies of dopant effects in poly(3,4-ethylenedioxythiophene) using Raman spectroscopy. J. Raman Spectrosc. 37, 1354–1361 (2006)CrossRefGoogle Scholar
  20. 20.
    H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012)CrossRefGoogle Scholar
  21. 21.
    H.Y. Zhang, G. Qin, Y.X. Lin, D.F. Zhang, H.Y. Liao, Z.H. Li, J.Y. Tian, Q.B. Wu, A novel flexible electrode with coaxial sandwich structure based polyaniline-coated MoS2 nanoflakes on activated carbon cloth. Electrochim. Acta 264, 91–100 (2018)CrossRefGoogle Scholar
  22. 22.
    T.H. Sun, Z.P. Li, X.H. Liu, L.M. Ma, J.Q. Wang, S.R. Yang, Oxygen-incorporated MoS2 microspheres with tunable interiors as novel electrode materials for supercapacitors. J. Power Sources 352, 135–142 (2017)CrossRefGoogle Scholar
  23. 23.
    K. Wang, J. Yang, J.X. Zhu, L. Li, Y. Liu, C. Zhang, T.X. Liu, General solution-processed formation of porous transition-metal oxides on exfoliated molybdenum disulfides for high-performance asymmetric supercapacitors. J. Mater. Chem. A 5, 11236–11245 (2017)CrossRefGoogle Scholar
  24. 24.
    A.V. Murugan, M. Quintin, M.-H. Delville, G. Campet, C.S. Gopinath, K. Vijayamohanan, Exfoliation-induced nanoribbon formation of poly(3,4-ethylenedioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries. J. Power Sources 156, 615–619 (2006)CrossRefGoogle Scholar
  25. 25.
    A.V. Murugan, M. Quintin, M.-H. Delville, G. Campet, A.K. Viswanath, C.S. Gopinath, K. Vijayamohanan, Synthesis and characterization of organic-inorganic poly(3,4-ethylenedioxythiophene)/MoS2 nanocomposite via in situ oxidative polymerization. J. Mater. Res. 21, 112–118 (2006)CrossRefGoogle Scholar
  26. 26.
    U. Gupta, K. Gopalakrishnan, C.N.R. Rao, Synthesis and properties of graphene and its 2D inorganic analogues with potential applications. Bull. Mater. Sci. 41, 129 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Chen, X.H. Zhu, D.Y. Yang, P.H. Wangyang, B. Zeng, H. Sun, A novel design of poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)/molybdenum disulfide/poly (3,4-ethylenedioxythiophene) nanocomposites for fabric micro-supercapacitors with favourable performances. Electrochim. Acta 298, 297–304 (2019)CrossRefGoogle Scholar
  28. 28.
    A.Q. Liang, D.Q. Li, W.Q. Zhou, Y.L. Wu, G. Ye, J. Wu, Y.N. Chang, R. Wang, J.K. Xu, G.M. Nie, J. Hou, Y.K. Du, Robust flexible WS2/PEDOT:PSS film for use in high-performance miniature supercapacitors. J. Electroanal. Chem. 824, 136–146 (2018)CrossRefGoogle Scholar
  29. 29.
    Y.N. Chang, W.Q. Zhou, J. Wu, G. Ye, Q.J. Zhou, D.Q. Li, D.H. Zhou, T.X. Li, G.M. Nie, Y.K. Du, J.K. Xu, High-performance flexible-film supercapacitor of layered hydrous RuO2/poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) through vacuum filtration. Electrochim. Acta 283, 744–754 (2018)CrossRefGoogle Scholar
  30. 30.
    Y.R. Dong, H. Jiang, Z.N. Deng, Y.J. Hu, C.Z. Li, Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage. Chem. Eng. J. 350, 1066–1072 (2018)CrossRefGoogle Scholar
  31. 31.
    F. Alvi, M.K. Ram, P.A. Basnayaka, E. Stefanakos, Y. Goswami, A. Kumar, Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor. Electrochim. Acta 56, 9406–9422 (2011)CrossRefGoogle Scholar
  32. 32.
    H. Jeon, J.M. Jeong, H.G. Kang, H.J. Kim, J. Park, D.H. Kim, Y.M. Jung, S.Y. Hwang, Y.K. Han, B.G. Choi, Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability. Adv. Energy Mater. 8, 1800227 (2018)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, C.C. Chen, D.G. Li, Electrodes based on cellulose nanofibers/carbon nanotubes network, polyaniline nanowires and carbon cloth for supercapacitors. Mater. Res. Express 6, 035008 (2019)CrossRefGoogle Scholar
  34. 34.
    X. Xiao, T.Q. Li, P.H. Yang, Y. Gao, H.Y. Jin, W.J. Ni et al., Fiber-based all-solid-state flexible supercapacitors for self-powered systems. ACS Nano 6, 9200–9206 (2012)CrossRefGoogle Scholar
  35. 35.
    Y. Chen, J.H. Xu, Y.J. Yang, Y.T. Zhao, W.Y. Yang, X.L. Mao, X. He, S.B. Li, The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim. Acta 193, 199–205 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Sichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic EngineeringChengdu University of Information TechnologyChengduPeople’s Republic of China

Personalised recommendations