Advertisement

Effect of CdS shell thickness on the photocatalytic properties of TiO2@CdS core–shell nanorod arrays

  • Zhu Shi
  • Jiani Liu
  • Huixia Lan
  • Xiuyan LiEmail author
  • Bangyao Zhu
  • Jinghai Yang
Article
  • 21 Downloads

Abstract

Rutile TiO2 nanorod arrays (NRAs) with average diameter approximately 80 nm were first synthesized by solvothermal method using Ti foil as both titanium source and substrate. And then TiO2@CdS core–shell heterostructure NRAs were fabricated via subsequent successive ionic layer adsorption and reaction (SILAR) route using the TiO2 NRAs as precursor. The thicknesses of CdS shell varied from 4 to 18 nm by changing the times of SILAR cycle. The photocatalytic performances of pure TiO2 and all TiO2@CdS NRAs were investigated on the degradation of rhodamine B (RhB) aqueous solution under simulated sunlight irradiation. Compared to pure TiO2 NRAs, all TiO2@CdS NRAs displayed superior photocatalytic activities, and the optimal CdS shell thickness of TiO2@CdS NRAs was about 11 nm. A possible Z-scheme electron transfer mechanism for TiO2@CdS NRAs nanocomposite with the enhanced photocatalytic performance was provided.

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61378085) and the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province (Item No. JJKH20191017KJ).

Supplementary material

10854_2019_2118_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2159 kb)

References

  1. 1.
    Z. Zhu, Z.Y. Lu, D.D. Wang, X. Tang, Y.S. Yan, Construction of high-dispersed Ag/Fe3O4/g-C3N4 photocatalyst by selective photo-deposition and improved photocatalytic activity. Appl. Catal. B 182, 115–122 (2016)Google Scholar
  2. 2.
    D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Handoko, Highly efficient photocatalytic h2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew. Chem. Int. Ed. 53, 9240–9245 (2014)Google Scholar
  3. 3.
    M. Rafatullah, O. Sulaiman, R. Hashim, A. Ahmad, Adsorption of methylene blue on lowcost adsorbents: a review. J. Hazard. Mater. 177, 70–80 (2010)Google Scholar
  4. 4.
    C. Namasivayam, D. Kavitha, Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 54, 47–58 (2002)Google Scholar
  5. 5.
    J. Zhang, L. Huang, H. Jin, Y. Sun, X. Ma, Constructing two-dimension MoS2/Bi2WO6 core-shell heterostructure as carriers transfer channel for enhancing photocatalytic activity. Mater. Res. Bull. 85, 140–146 (2017)Google Scholar
  6. 6.
    Z.F. Jiang, D.L. Jiang, Z.X. Yan, D. Liu, A new visible light active multifunctional ternary composite based on TiO2-In2O3 nanocrystals heterojunction decorated porous graphitic carbon nitride for photocatalytic treatment of hazardous pollutant and H2 evolution. Appl. Catal. B 170, 195–205 (2015)Google Scholar
  7. 7.
    X. Li, T. Xia, C.H. Xu, J. Murowchick, X.B. Chen, Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 225, 64–73 (2014)Google Scholar
  8. 8.
    X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)Google Scholar
  9. 9.
    C. Zhao, H. Luo, F. Chen, P. Zhang, L. Yi, K. You, A novel composite of TiO2 nanotubes with remarkably high efficiency for hydrogen production in solardriven water splitting. Energ. Environ. Sci. 7, 1700–1707 (2014)Google Scholar
  10. 10.
    C.B.D. Marien, T. Cottineau, D. Roberta, P. Drogui, TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of Paraquat. Appl. Catal. B 194, 1–6 (2016)Google Scholar
  11. 11.
    D. Reyes-Coronado, G. Rodr´ıguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. Coss, G. Oskam, Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology 19, 145605 (2008)Google Scholar
  12. 12.
    M. Dawson, C. Ribeiro, M.R. Morelli, Rutile supported anatase nanostructured films as photocatalysts for the degradation of water contaminants. Ceram. Int. 42, 808–819 (2016)Google Scholar
  13. 13.
    K. Ozawa, S. Yamamoto, R. Yukawa, R.Y. Liu, N. Terashima, Y. Natsui, H. Kato, K. Mase, I. Matsuda, Correlation between photocatalytic activity and carrier lifetime: acetic acid on single-crystal surfaces of anatase and rutile TiO2. J. Phys. Chem. C 122, 9562–9569 (2018)Google Scholar
  14. 14.
    X. Yang, L. Wu, L. Ma, X. Li, T. Wang, S. Liao, Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamaldehyde. Catal. Commun. 59, 184–188 (2015)Google Scholar
  15. 15.
    R. Daghrir, P. Drogui, D. Robert, Modified TiO2 for environmental photocatalytic applications: a review. Ind. Eng. Chem. Res. 52, 3581–3599 (2013)Google Scholar
  16. 16.
    P. Kar, S. Zheng, Y. Zhang, E. Vahidzadeh, A. Manuel, R. Kisslinger, K. Alam, U. Thakur, N. Mahdi, P. Kumar, K. Shankar, High rate CO2 photoreduction using flame annealed TiO2 nanotubes. Appl. Catal. B 243, 522–536 (2019)Google Scholar
  17. 17.
    M. Kobielusz, K. Pilarczyk, E. Swietek, K. Szaciłowski, W. Macyk, Spectroelectrochemical analysis of TiO2 electronic states-implications on the photocatalytic activity of anatase and rutile. Catal. Today 309, 35–42 (2018)Google Scholar
  18. 18.
    U. Nwankwo, R. Bucher, A.B.C. Ekwealor, M. Maaza, F.I. Ezema, Synthesis and characterizations of rutile-TiO2 nanoparticles derived from chitin for potential photocatalytic applications. Vacuum 161, 49–54 (2019)Google Scholar
  19. 19.
    A. Mohammadpour, B.D. Wiltshire, Y. Zhang, S. Farsinezhad, A.M. Askar, R. Kisslinger, Y. Ren, P. Kar, K. Shankar, 100-fold improvement in carrier drift mobilities in alkanephosphonate-passivated monocrystalline TiO2 nanowire arrays. Nanotechnology 28, 144001 (2017)Google Scholar
  20. 20.
    U.K. Thakur, A.M. Askar, R. Kisslinger, B.D. Wiltshire, P. Kar, K. Shankar, Halide perovskite solar cells using monocrystalline TiO2 nanorod arrays as electron transport layers: impact of nanorod morphology. Nanotechnology 28, 274001 (2017)Google Scholar
  21. 21.
    D. Sarkar, C.K. Ghosh, S. Mukherjee, Three dimensional Ag2O/TiO2 type-II (p-n) nanoheterojunctions for superior photocatalytic activity. ACS Appl. Mater. Interfaces. 5, 331–337 (2013)Google Scholar
  22. 22.
    Y.S. Chang, M. Choi, M. Baek, P.Y. Hsieh, K.J. Yong, Y.J. Hsu, CdS/CdSe co-sensitized brookite H: TiO2 nanostructures: charge carrier dynamics and photoelectrochemical hydrogen generation. Appl. Catal. B 225, 379–385 (2018)Google Scholar
  23. 23.
    T. Lv, L.K. Pan, X.J. Liu, Z. Sun, Visible-light photocatalytic degradation of methyl orange by CdS-TiO2-Au composites synthesized via microwave-assisted reaction. Electrochim. Acta 83, 216–220 (2012)Google Scholar
  24. 24.
    N. Mohaghegh, B. Eshaghi, E. Rahimi, M.R. Gholami, Ag2CO3 sensitized TiO2 nanoparticles prepared in ionic liquid medium: a new Ag2CO3/TiO2/RTIL heterostructure with highly efficient photocatalytic activity. J. Mol. Catal. A 406, 152–158 (2015)Google Scholar
  25. 25.
    J. Zhang, X.M. Ma, L.L. Zhang, Z.D. Lu, Constructing a novel n-p-n dual heterojunction between anatase TiO2 nanosheets with coexposed 101}, {001 facets and porous ZnS for enhancing photocatalytic activity. J. Phys. Chem. C 121, 6133–6140 (2017)Google Scholar
  26. 26.
    Y.B. Liu, H.B. Zhou, B.X. Zhou, J.H. Li, H.C. Chen, J.J. Wang, J. Bai, Highly stable CdS-modified short TiO2 nanotube array electrode for efficient visible-light hydrogen generation. Int. J. Hydrog. Energy 36, 167–174 (2011)Google Scholar
  27. 27.
    Y. Lin, J. Song, Y. Ding, S. Lu, Z.L. Wang, Alternating the output of a CdS nanowire nanogenerator by a white-light-stimulated optoelectronic effect. Adv. Mater. 20, 3127–3130 (2008)Google Scholar
  28. 28.
    Y. Liu, P. Zhang, B.Z. Tian, J.L. Zhang, Enhancing the photocatalytic activity of CdS nanorods for selective oxidation of benzyl alcohol by coating amorphous TiO2 shell layer. Catal. Commun. 70, 30–33 (2015)Google Scholar
  29. 29.
    W.H. Dong, F. Pan, L.L. Xu, M.R. Zheng, C.H. Sow, K. Wu, G.Q. Xu, W. Chen, Facile synthesis of CdS@TiO2 core-shell nanorods with controllable shell thickness and enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 349, 279–286 (2015)Google Scholar
  30. 30.
    C. Su, C. Shao, Y. Liu, Electrospun nanofibers of TiO2/CdS heteroarchitectures with enhanced photocatalytic activity by visible light. J. Colloids Interface Sci. 359, 220–227 (2011)Google Scholar
  31. 31.
    X.Y. Guo, C.F. Chen, W.Y. Song, X. Wang, W.H. Di, W.P. Qin, CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Mol. Catal. A 387, 1–6 (2014)Google Scholar
  32. 32.
    P. Gao, J. Liu, T. Zhang, D.D. Sun, W. Ng, Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J. Hazard. Mater. 229–230, 209–216 (2012)Google Scholar
  33. 33.
    Y. Zhang, Y. Gao, X.H. Xia, Q.R. Deng, M.L. Guo, Structural engineering of thin films of vertically aligned TiO2 nanorods. Mater. Lett. 64, 1614–1617 (2010)Google Scholar
  34. 34.
    H. Pan, J.S. Qian, A. Yu, M.G. Xu, TiO2 wedgy nanotubes array flims for photovoltaic enhancement. Appl. Surf. Sci. 257, 5059–5063 (2011)Google Scholar
  35. 35.
    Y.T. Xue, Z.S. Wu, X.F. He, X. Yang, X.Q. Chen, Z.Z. Gao, Constructing a Z-scheme heterojunction of egg-like core@shell CdS@TiO2 photocatalyst via a facile reflux method for enhanced photocatalytic performance. Nanomaterials 9, 222 (2019)Google Scholar
  36. 36.
    C.J. Liu, Y.H. Yang, J. Li, S. Chen, Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity. Nanotechnology 29, 265401 (2018)Google Scholar
  37. 37.
    E. Üzer, P. Kumar, R. Kisslinger, P. Kar, U.K. Thakur, S. Zeng, K. Shankar, T. Nilges, Vapor deposition of semiconducting phosphorus allotropes into TiO2 nanotube arrays for photoelectrocatalytic water splitting. ACS Appl Nano Mater 26, 3358–3367 (2019)Google Scholar
  38. 38.
    M. Xi, Y.L. Zhang, L.Z. Long, X.J. Li, Controllable hydrothermal synthesis of rutile TiO2 hollow nanorod arrays on TiCl4 pretreated Ti foil for DSSC application. J. Solid State Chem. 219, 118–126 (2014)Google Scholar
  39. 39.
    P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)Google Scholar
  40. 40.
    P. Kar, Y. Zhang, S. Farsinezhad, A. Mohammadpour, B.D. Wiltshire, H. Sharma, K. Shankar, Rutile phase n-and p-type anodic titania nanotube arrays with square-shaped pore morphologies. Chem. Commun. 51, 7816–7819 (2015)Google Scholar
  41. 41.
    S.S. Mali, S.K. Desai, D.S. Dalavi, C.A. Betty, P.N. Bhosalea, P.S. Patil, CdS sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application. Photochem. Photobiol. Sci. 10, 1652–1658 (2011)Google Scholar
  42. 42.
    P.P. Zhou, Y. Xie, J. Fang, Y. Ling, C.L. Yu, X.M. Liu, Y.H. Dai, Y.C. Qin, D. Zhou, CdS quantum dots confined in mesoporous TiO2 with exceptional photocatalytic performance for degradation of organic pollutants. Chemosphere 178, 1–10 (2017)Google Scholar
  43. 43.
    N. Qin, J.H. Xiong, R.W. Liang, Y.H. Liu, S.Y. Zhang, Y.H. Li, Z.H. Li, L. Wu, Highly efficient photocatalytic H2 evolution over MoS2/CdS-TiO2 nanofibers prepared by an electrospinning mediated photodeposition method. Appl. Catal. B 202, 374–380 (2017)Google Scholar
  44. 44.
    S. David, M.A. Mahadik, H.S. Chung, J. Ryu, J.S. Jang, Facile hydrothermally synthesized a novel CdS nanoflower/rutile-TiO2 nanorod heterojunction photoanode used for photoelectrocatalytic hydrogen generation. ACS Sustain. Chem. Eng. 5, 7537–7548 (2017)Google Scholar
  45. 45.
    S.Y. Li, Z.L. Liu, G.X. Xiang, B.H. Ma, X.D. Meng, Y.L. He, Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone-like structure decorated with CdS nanoparticles. Ceram. Int. 45, 767–776 (2019)Google Scholar
  46. 46.
    Y.F. Li, L.L. Wang, Z.L. Li, Y.L. Liu, Z.Y. Peng, Synthesis and photocatalytic property of V2O5@TiO2 core-shell microspheres towards gaseous benzene. Catal. Today 321–322, 164–171 (2019)Google Scholar
  47. 47.
    H.Y. Yang, Z.L. Liu, K. Wang, S.T. Pu, S.N. Yang, L. Yang, A facile synthesis of TiO2-CdS heterostructures with enhanced photocatalytic activity. Catal. Lett. 147, 2581–2591 (2017)Google Scholar
  48. 48.
    P.S. Shinde, J.W. Park, M.A. Mahadik, J. Ryu, J.H. Park, Y.J. Yi, J.S. Jang, Fabrication of efficient CdS nanoflowers-decorated TiO2 nanotubes array heterojunction photoanode by a novel synthetic approach for solar hydrogen production. Int. J. Hydrog. Energy 46, 21078–21087 (2016)Google Scholar
  49. 49.
    G.D. Yang, B.L. Yang, T.C. Xiao, Z.F. Yan, One-step solvothermal synthesis of hierarchically porous nanostructured CdS/TiO2 heterojunction with higher visible light photocatalytic activity. Appl. Surf. Sci. 283, 402–410 (2013)Google Scholar
  50. 50.
    M. Fujishima, Y. Nakabayashi, K. Takayama, H. Kobayashi, H. Tada, High coverage formation of CdS quantum dots on TiO2 by the photocatalytic growth of preformed seeds. J. Phys. Chem. C 120, 17365–17371 (2016)Google Scholar
  51. 51.
    X.Y. Li, D.X. Liu, Z. Shi, J.H. Yang, Effect of Ag2S shell thickness on the photocatalytic properties of ZnO/Ag2S core-shell nanorod arrays. J. Mater. Sci. 54, 1226–1235 (2019)Google Scholar
  52. 52.
    X.Y. Li, X. Li, B.Y. Zhu, J.S. Wang, H.X. Lan, X.B. Chen, Synthesis of porous ZnS ZnO and ZnS/ZnO nanosheets and their photocatalytic properties. RSC Adv. 7, 30956–30962 (2017)Google Scholar
  53. 53.
    Y.H. Zhang, N. Zhang, Z.R. Tang, Y.J. Xu, Identification of Bi2WO6 as a highly selective visible-light photocatalyst toward oxidation of glyceroltodihy-droxyacetone in water. Chem. Sci. 4, 1820–1824 (2013)Google Scholar
  54. 54.
    C.L. Cao, C.G. Hu, W.D. Shen, S.X. Wang, Y.S. Tian, X. Wang, Synthesis and characterization of TiO2/CdS core–shell nanorod arrays and their photoelectrochemical property. J. Alloys Compd. 523, 139–145 (2012)Google Scholar
  55. 55.
    X. Li, C.Y. Liu, D.Y. Wu, J.Z. Li, P.W. Huo, H.Q. Wang, Improved charge transfer by size-dependent plasmonic Au on C3N4 for efficient photocatalytic oxidation of RhB and CO2 reduction. Chin. J. Catal. 40, 928–939 (2019)Google Scholar
  56. 56.
    D. Li, C. Shen, J.Z. Liu, Y.J. Li, X.H. Zhou, P.W. Song, H.Q. Huo, Y.S. Wang, Yan, Fabricated rGO-modified Ag2S nanoparticles/g-C3N4 nanosheets photocatalyst for enhancing photocatalytic activity. J. Colloids Interface Sci. 554, 468–478 (2019)Google Scholar
  57. 57.
    Y.Y. Lu, Y.Y. Zhang, J. Zhang, Y. Shi, Z. Li, Z.C. Feng, C. Li, In situ loading of CuS nanoflowers on rutile TiO2 surface and their improved photocatalytic performance. Appl. Surf. Sci. 370, 312–319 (2016)Google Scholar
  58. 58.
    X.Y. Li, D.X. Liu, B.Y. Zhu, J. Wang, J.H. Lang, Facile preparation of ZnO/Ag2CO3 heterostructured nanorod arrays with improved photocatalytic activity. J. Phys. Chem. Solids 125, 96–102 (2019)Google Scholar
  59. 59.
    D.D. Wang, D.L. Han, Z. Shi, J. Wang, J.H. Yang, X.Y. Li, H. Song, Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications. Appl. Catal. B 227, 61–69 (2018)Google Scholar
  60. 60.
    H.R. Liu, H.F. Zhai, C.J. Hu, J.E. Yang, Z.Y. Liu, Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability. Nanoscale Res. Lett. 12, 466–476 (2017)Google Scholar
  61. 61.
    H.R. Liu, Y.C. Hu, Z.X. Zhang, X.G. Liu, H.S. Jia, B.S. Xu, Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation. Appl. Surf. Sci. 355, 644–652 (2015)Google Scholar
  62. 62.
    H.X. Zhao, S. Cui, L. Yang, G.D. Li, N. Li, X.T. Li, Synthesis of hierarchically meso-macroporous TiO2/CdS heterojunction photocatalysts with excellent visible-light photocatalytic activity. J. Colloids Interface Sci. 23, 4246–4254 (2013)Google Scholar
  63. 63.
    W. Wu, C.Z. Jiang, V.A.L. Roy, Recent progress in magnetic iron oxide-semiconductor composite nanomaterials as promising photocatalysts. Nanoscale 7, 38–58 (2015)Google Scholar
  64. 64.
    Y.X. Zhu, Y.F. Wang, Z. Chen, L.S. Qin, L.B. Yang, L. Zhu, Visible light induced photocatalysis on CdS quantum dots decorated TiO2 nanotube arrays. Appl. Catal. A 498, 164–171 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversityChangchunPeople’s Republic of China
  2. 2.College of Environment and Safe EngineeringQingdao University of Science & TechnologyQingdaoPeople’s Republic of China
  3. 3.Department of Tourism and GeographyJilin Normal UniversitySipingPeople’s Republic of China

Personalised recommendations