Advertisement

Improved sintering characteristics and microwave dielectric properties of 0.02B2O3–0.98SiO2 ceramics by SiO2 nanoparticle additive

  • Kai Wang
  • Dawei Wang
  • Xiaochi Lu
  • Lei Yu
  • Xuhong Wang
  • Zhefei WangEmail author
Article
  • 23 Downloads

Abstract

SiO2 nanoparticles (SiO2 NPs) modified 0.02B2O3–0.98SiO2 ceramics were prepared by solid state sintering. The microstructure and microwave dielectric properties were investigated. All the modified samples exhibited low-cristobalite phase with small amount of quartz. The quartz phase inhibited the cracking caused by crystallization process of low-cristobalite. The densification of 0.02B2O3–0.98SiO2 ceramics improved with SiO2 NPs addition. The introduction of 1.5 wt% SiO2 NPs brings excellent microwave dielectric properties with εr = 4.4, Q × f = 42000 GHz, τf = − 5 ppm/°C for the samples sintered at 1250 °C, which can be a low-temperature sintering system as microwave substrate materials.

Notes

Acknowledgements

This work was supported by General Program of Natural Science Fund for Colleges and Universities in Jiangsu Province of China (No. 18KJB430001), Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure (No. SKL201309SIC), Scientific Research Project of Changshu Institute of Technology (No. XZ1522).

References

  1. 1.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57 (2013)CrossRefGoogle Scholar
  2. 2.
    R.J. Cava, J. Mater. Chem. 11(1), 54 (2001)CrossRefGoogle Scholar
  3. 3.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, S.H. Jabarov, V.V. Korovushkin, S.V. Trukhanov, E.L. Trukhanova, Ceram. Int. 43, 12822 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Cheng, Y. Tang, H.C. Xiang, C.C. Li, L. Fang, Y.H. Sun, J. Eur. Ceram. Soc. 39(8), 2680 (2019)CrossRefGoogle Scholar
  5. 5.
    L.X. Pang, D. Zhou, Z.X. Yue, J. Alloy Compd. 781, 385 (2019)CrossRefGoogle Scholar
  6. 6.
    S.Z. Hao, D. Zhou, L.X. Pang, J. Am. Ceram. Soc. 102(6), 3103 (2019)CrossRefGoogle Scholar
  7. 7.
    W. Lei, Z.Y. Zou, Z.H. Chen, B. Ullah, A. Zeb, X.K. Lan, W.Z. Lu, G.F. Fan, X.H. Wang, X.C. Wang, J. Am. Ceram. Soc. 101(1), 25 (2018)CrossRefGoogle Scholar
  8. 8.
    S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, V.G. Kostishyn, L.V. Panina, I.S. Kazakevich, A.M. Balagurov, J. Alloys Compd. 689, 383 (2016)CrossRefGoogle Scholar
  9. 9.
    J. Nan, C.E. Huang, L. Tian, C.Y. Shen, Mater. Lett. 249, 132 (2019)CrossRefGoogle Scholar
  10. 10.
    K.G. Wang, H.F. Zhou, X.B. Liu, W.D. Sun, X.L. Chen, H. Ruan, J. Eur. Ceram. Soc. 39(4), 1122 (2019)CrossRefGoogle Scholar
  11. 11.
    H. Li, P.C. Zhang, S.Q. Yu, H.Y. Yang, B. Tang, F.H. Li, S.R. Zhang, Ceram. Int. 45(9), 11639 (2019)CrossRefGoogle Scholar
  12. 12.
    H. Li, X.Q. Chen, Q.Y. Xiang, B. Tang, J.W. Lu, Y.H. Zou, S.R. Zhang, Structure. Ceram. Int. 45(11), 14160 (2019)CrossRefGoogle Scholar
  13. 13.
    Y. Fang, L. Li, Q. Xiao, X.M. Chen, Ceram. Int. 38(6), 4511 (2012)CrossRefGoogle Scholar
  14. 14.
    J.J. Bian, Y.R. Xie, J. Eur. Ceram. Soc. 38(7), 2747 (2018)CrossRefGoogle Scholar
  15. 15.
    L. Li, W.B. Hong, G.Y. Chen, X.M. Chen, J. Alloy Compd. 774, 706 (2019)CrossRefGoogle Scholar
  16. 16.
    H.C. Xiang, Y. Bai, V. Jobin, C.C. Li, L. Fang, H. Jantunen, J. Am. Ceram. Soc. 102(3), 1218 (2019)CrossRefGoogle Scholar
  17. 17.
    P. Gogoi, L.R. Singh, D. Pamu, J. Am. Ceram. Soc. 101(12), 5389 (2018)CrossRefGoogle Scholar
  18. 18.
    L. Li, C.H. Liu, J.Y. Zhu, X.M. Chen, J. Eur. Ceram. Soc. 35(6), 1799 (2015)CrossRefGoogle Scholar
  19. 19.
    X.H. Ma, S.H. Kweon, M. Im, S. Nahm, J. Eur. Ceram. Soc. 38(14), 4682 (2018)CrossRefGoogle Scholar
  20. 20.
    C.C. Li, H.C. Xiang, C.Z. Yin, Y. Tang, Y.C. Li, L. Fang, J. Electron. Mater. 47(11), 6383 (2018)CrossRefGoogle Scholar
  21. 21.
    M.J. Wu, J.D. Chen, Y.C. Zhang, J. Mater. Sci.: Mater. Electron. 29(11), 13132 (2018)Google Scholar
  22. 22.
    F. Liu, X.P. Huang, J.J. Qu, C.L. Yuan, G.H. Chen, Q. Feng, J. Mater. Sci.: Mater. Electron. 28(11), 8160 (2017)Google Scholar
  23. 23.
    C.X. Hu, P. Liu, J. Alloy Compd. 559, 129 (2013)CrossRefGoogle Scholar
  24. 24.
    C.X. Hu, Y. Liu, P. Liu, B. Yang, J. Alloy Compd. 712, 804 (2017)CrossRefGoogle Scholar
  25. 25.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, Dalton Trans. 46, 9010 (2017)CrossRefGoogle Scholar
  26. 26.
    B.W. Hakki, P.D. Coleman, IRE. Trans. Microwave Theory Tech. 8, 402 (2003)CrossRefGoogle Scholar
  27. 27.
    D. Kajfez, P. Guillon, Dielectric Resonators, 2nd edn. (Noble, Atlanta, 1998)Google Scholar
  28. 28.
    C.C. Chiang, S.F. Wang, Y.R. Wang, W.C.J. Wei, Ceram. Int. 34, 599 (2008)CrossRefGoogle Scholar
  29. 29.
    S.J. Penn, N.M. Alford, A. Templeton, X.R. Wang, M.S. Xu, M. Reece, J. Am. Ceram. Soc. 80, 1885 (1997)CrossRefGoogle Scholar
  30. 30.
    S.V. Trukhanov, A.V. Trukhanov, C.E. Botez, A.H. Adair, H. Szymczak, R. Szymczak, J. Phys. Condens. Mater. 19, 266214 (2007)CrossRefGoogle Scholar
  31. 31.
    M.M. Krzmanc, M. Valant, D. Suvorov, J. Eur. Ceram. Soc. 25, 2835 (2005)CrossRefGoogle Scholar
  32. 32.
    D. Zhou, C.A. Randall, H. Wang, L.X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 1096 (2010)CrossRefGoogle Scholar
  33. 33.
    P. Abhilash, D. Thomas, M.T. Sebastian, Int. J. Mod. Phys. Conf. Ser. 22, 159 (2013)CrossRefGoogle Scholar
  34. 34.
    L. Li, Y. Fang, Q. Xiao, Y.J. Wu, N. Wang, X.M. Chen, Int. J. Appl. Ceram. Technol. 11, 193 (2014)CrossRefGoogle Scholar
  35. 35.
    C.X. Hu, P. Liu, Mater. Res. Bull. 65, 132 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kai Wang
    • 1
  • Dawei Wang
    • 1
  • Xiaochi Lu
    • 2
  • Lei Yu
    • 1
    • 3
  • Xuhong Wang
    • 1
    • 3
  • Zhefei Wang
    • 1
    • 3
    Email author
  1. 1.Department of Chemistry and Materials EngineeringChangshu Institute of TechnologyChangshuChina
  2. 2.College of Materials Science and EngineeringNanjing Tech UniversityNanjingChina
  3. 3.Suzhou Key Laboratory of Functional Ceramic MaterialsChangshu Institute of TechnologyChangshuChina

Personalised recommendations