Structural, morphological and dielectric investigation of spinel chromite (XCr2O4, X = Zn, Mn, Cu & Fe) nanoparticles

  • Muhammad Burhan Shafqat
  • Muhammad Ali
  • Shahid AtiqEmail author
  • Shahid M. Ramay
  • Hamid M. Shaikh
  • Shahzad Naseem


The nature of engineering technique has a significant effect on the particle size, particle distribution and thus affects the morphological, electrical and dielectric properties of the materials. In this work, ZnCr2O4, MnCr2O4, CuCr2O4 and FeCr2O4 nanoparticles have been synthesized using wet chemical based sol–gel auto-combustion method. The crystal structure, lattice constant, unit cell volume, X-ray density and porosity of the calcined powder samples were determined from the data obtained from X-ray diffractometer. Morphology, grains size and distribution of the grains were analyzed using field emission scanning electron microscopy. Dielectric response of the samples was checked in the frequency range of 20 Hz to 20 MHz. The analysis of real and imaginary dielectric constant and tangent loss revealed a non-linear dielectric behavior of the spinel oxides. A strong frequency dependent response of different electroactive regions was found by impedance spectroscopy. Hopping of charge carriers in the conduction mechanism of spinel chromites was analyzed from the variation of ac conductivity with frequency.



The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research Group No (RG- 1440-021).


  1. 1.
    P. Matulkova, B. Holec, S. Pacakova, A. Kubickova, J. Mantlikova, I. Plocek, D. Nemec, J. Niznansky, Vejpravova, On preparation of nanocrystalline chromites by co-precipitation and autocombustion methods. Mater. Sci. Eng. 195, 66–73 (2015)CrossRefGoogle Scholar
  2. 2.
    L. Patron, V. Pocol, O. Carp, E. Modrogan, M. Brezeanu, New synthetic route in obtaining copper chromite I. hydrolysis of some soluble salts. Mater. Res. Bull. 36(7–8), 1269–1276 (2001)CrossRefGoogle Scholar
  3. 3.
    D. Gingasu, I. Nindru, D.C. Culita, L. Patron, J.M. Calderon-Moreno, S. Preda, O. Oprea, P. Osiceanu, Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes. Mater. Res. Bull. 49, 151–159 (2014)CrossRefGoogle Scholar
  4. 4.
    S. Naz, S.K. Durrani, M. Mehmood, M. Nadeem, Hydrothermal synthesis, structural and impedance studies of nanocrystalline zinc chromite spinel oxide material. J. Saudi Chem. Soc. 20, 585–593 (2016)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, X.A. Fan, L. Lu, X. Hu, Plasma sprayed ferrite-based infrared radiation coating directly from transition metal oxides without high-temperature roasting. Mater. Lett. 161, 348–351 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Gul, Radio frequency abnormal dielectric response of manganese chromite (MnCr2O4) nanoparticles synthesized by co-precipitation method. Mater. Res. Bull. 76, 431–435 (2016)CrossRefGoogle Scholar
  7. 7.
    Z. Ahmad, S. Atiq, S.K. Abbas, S.M. Ramay, S. Riaz, S. Naseem, Structural and complex impedance spectroscopic studies of Mg substituted CoFe2O4. Ceram. Int. 42, 18271–18282 (2016)CrossRefGoogle Scholar
  8. 8.
    M. Khalid, G.M. Ali, S. Mustafa, S.M. Atiq, A. Ramay, S. Mahmood, Naseem, Structural and dielectric properties of sol–gel synthesized (Mn, Cu) co-doped BiFeO3 ceramics. J. Sol. Gel Sci. Technol. 80, 814–820 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Parhi, V. Manivannan, Microwave metathetic approach for the synthesis and characterization of ZnCr2O4. J. Eur. Ceram. Soc. 28, 1665–1670 (2008)CrossRefGoogle Scholar
  10. 10.
    L. Zou, X. Xiang, J. Fan, F. Li, D.G. Evans, Synthesis of high surface area zinc chromate spinel with mesopore network from Zn–Cr-layered double hydroxide precursor. J. Phys. Chem. Solids 69, 1075–1078 (2008)CrossRefGoogle Scholar
  11. 11.
    M. Yazdanbakhsh, I. Khosravi, E.K. Goharshadi, A. Youssefi, Fabrication of nanospinel ZnCr2O4 using sol–gel method and its application on removal of azo dye from aqueous solution. J. Hazard. Mater. 184, 684–689 (2010)CrossRefGoogle Scholar
  12. 12.
    M. Ptak, M. Maczka, A. Gągor, A. Pikul, L. Macalik, J. Hanuza, Temperature-dependent XRD, IR, magnetic, SEM and TEM studies of Jahn-Teller distorted NiCr2O4 powders. J. Solid State Chem. 201, 270–279 (2013)CrossRefGoogle Scholar
  13. 13.
    E. Grazenaite, J. Pinkas, A. Beganskiene, A. Kareiva, Sol-gel and sonochemically derived transition metal chromite as pigments. Ceram. Int. 42, 9402–9412 (2016)CrossRefGoogle Scholar
  14. 14.
    S.G. Hosseini, R. Abazari, A. Gavi, Pure CuCr2O4 nanoparticles, synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sci. 37, 72–79 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Gingasu, I. Mindru, L. Patron, D.C. Culita, J.M. Calderon-Moreno, L. Diamandescu, M. Feder, O. Oprea, Precursor method—a nonconventional route for the synthesis of ZnCr2O4 spinel. J. Phys. Chem. Solids 74, 1295–1302 (2014)CrossRefGoogle Scholar
  16. 16.
    B.D. Cullity, J.W. Weymouth, Elements of X-ray Diffraction. Am. J. Phys. 25, 394–395 (1957)CrossRefGoogle Scholar
  17. 17.
    L. Patron, V. Pocol, O. Carp, E. Modrogan, M. Brezeanu, New synthetic route in obtaining copper chromite I. Hydrolysis of some soluble salts. Mater. Res. Bull. 36(7–8), 1269–1276 (2001)CrossRefGoogle Scholar
  18. 18.
    J. Wang, Y. Sun, H. Jiang, J. Feng, Removal of caffeine from water by combining dielectric barrier discharge (DBD) plasma with goethite. J. Saudi. Chem. Soc. 21, 545–557 (2017)CrossRefGoogle Scholar
  19. 19.
    G.M. Mustafa, S. Atiq, S.K. Abbas, S. Riaz, S. Naseem, Tunable structural and electrical impedance properties of pyrochlores based Nd doped lanthanum zirconate nanoparticles for capacitive applications. Ceram. Int. 44, 2170–2177 (2018)CrossRefGoogle Scholar
  20. 20.
    S. Ashima, S. Agarwal, A. Reetu, Rietveld refinement, electrical properties and magnetic characteristics of Ca-Sr substituted barium hexaferrites. J. Alloy. Compd. 513, 436–444 (2012)CrossRefGoogle Scholar
  21. 21.
    C.G. Koop, On the dispersion of resistivity and dielectric constant of some semiconductor at audio frequencies. Phys. Rev. 83, 121–124 (1951)CrossRefGoogle Scholar
  22. 22.
    J.C. Maxwell, A treatise on electricity and magnetism (Clarendon Press, Oxford, 1982)Google Scholar
  23. 23.
    M. Abdallh, E. Bakir, E. Yousif, Study the electrical conductivity of crosslinked polyester doped with different metal salts. J. Saudi. Chem. Soc. 18, 387–391 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Khalid, S.M. Atiq, A. Ramay, G.M. Mahmood, S. Mustafa, Riaz, Naseem, S, Magneto-electric characteristics in (Mn, Cu) co-doped BiFeO3 multiferroic nanoparticles. J. Mater. Sci. 27, 8966–8972 (2016)Google Scholar
  25. 25.
    P. Ganguly, A.K. Jha, K.L. Deori, Complex impedance studies of tungsten-bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramic. Solid State Commun. 146, 472–477 (2008)CrossRefGoogle Scholar
  26. 26.
    S.K. Durrani, S. Naz, M, Mehmood, M, Nadeem, M, Siddique, Structural, impedance and Mössbauer studies of magnesium ferrite synthesized via sol–gel auto-combustion process. J. Saudi. Chem. Soc. 21, 899–910 (2017)CrossRefGoogle Scholar
  27. 27.
    S. Pattanayak, B.N. Parida, P.R. Das, Impedance spectroscopy of Gd-doped BiFeO3 multiferroics. Appl. Phys. A 112, 387–395 (2013)CrossRefGoogle Scholar
  28. 28.
    R.M. Almeida, W. Paraguassu, D.S. Pires, R.R. Correa, C.W.D.A. Paschoal, Impedance spectroscopy analysis of BaFe12O19 hexaferrite obtained by ceramic method. Ceram. Int. 35, 2443–2447 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Excellence in Solid State Physics, University of the PunjabLahorePakistan
  2. 2.Physics and Astronomy Department, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Chemical Engineering DepartmentSABIC Polymer Research Center (SPRC), King Saud UniversityRiyadhSaudi Arabia

Personalised recommendations