2D/3D interface engineering: direct Z-scheme g-C3N4/YMnO3 heterojunction for reinforced visible-light photocatalytic oxidation

  • Yizhang Wu
  • Xuan Zhou
  • Mengmeng Li
  • Yuanqi Wang
  • Boye Zhou
  • Niandu Wu
  • Wei Zhong
  • Hong-Ling CaiEmail author
  • X. S. WuEmail author


Graphitic carbon nitride (g-C3N4) is a two-dimensional (2D) photocatalyst, but it appears a mediocre catalytic property due to the recombination of charge carriers. Constructing heterojunctions can boost the separation and suppress the recombination of photo-generated electron–hole pairs. For the conventional Type-II heterojunction, the oxidation ability is significantly reduced due to the decreasing of band gap. We try to maintain its oxidation capacity and promote the artificial bandgap by tailoring a Z-scheme heterojunction through interface engineering. Herein, we grafted different proportions of YMnO3 3D-nanoparticles onto g-C3N4 2D-nanosheets. This special 2D/3D mixed-dimensional nanocomposite exhibits efficient charge carrier transport performance according to the electrochemistry and photocurrent measurement. The outstanding photocatalytic oxidation ability can be verified by the rate of Rhodamine B degradation, which is 3.8 and 2.3 times of YMnO3 and g-C3N4, respectively. Theoretical calculation, active group capture experiments and electron spin resonance indicate the energy band position and the reactive groups (superoxide radicals and holes). The optimized g-C3N4/YMnO3 heterojunction utilizes the interfacial synergistic effect to achieve a composition of vigorous oxidizing ability and outstanding visible light harvesting. This work will pave a promising access for mechanism and interface engineering of other g-C3N4-based Z-scheme heterojunctions.



This work was supported by the National Natural Science Foundations of China (No. 11574138, 11874200 and 21427801), the Top-Notch Young Talents Program of China, the National Key R&D Program of China (2016YFA0201104) and Dengfeng Project B of Nanjing University. Thanks are due to Mr. Wang for assistance with writing and to Mr. Xu for valuable discussion.

Supplementary material

10854_2019_2109_MOESM1_ESM.docx (100 kb)
Supplementary material 1 (DOCX 99 kb)


  1. 1.
    P. Kumar, R. Boukherroub, K. Shankar, J. Mater. Chem. A. 6(27), 12876–12931 (2018)Google Scholar
  2. 2.
    J. Yuan, X. Liu, Y. Liu, C. Liu, Y. Tang, Y. Zeng, L. Wang, S. Zhang, T. Cai, S. Luo, Y. Pei, Appl. Catal. B 237, 24–31 (2018)Google Scholar
  3. 3.
    D. Zeng, P. Wu, W.-J. Ong, B. Tang, M. Wu, H. Zheng, Y. Chen, D.-L. Peng, Appl. Catal. B 233, 26–34 (2018)Google Scholar
  4. 4.
    J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8(3), 1701503 (2018)Google Scholar
  5. 5.
    S. Zeng, P. Kar, U.K. Thakur, K. Shankar, Nanotechnology 29(5), 52001–052001 (2018)Google Scholar
  6. 6.
    K. Kamata, Bull. Chem. Soc. Jpn 92(1), 133–151 (2019)Google Scholar
  7. 7.
    Y. Tan, Z. Shu, J. Zhou, T. Li, W. Wang, Z. Zhao, Appl. Catal. B 230, 260–268 (2018)Google Scholar
  8. 8.
    Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Nanoscale 5(18), 8326–8339 (2013)Google Scholar
  9. 9.
    W. Yu, D. Xu, T. Peng, J. Mater. Chem. A 3(39), 19936–19947 (2015)Google Scholar
  10. 10.
    J. Wang, H. Shu, T. Zhao, P. Liang, N. Wang, D. Cao, X. Chen, Phys. Chem. Chem. Phys. 20(27), 18571–18578 (2018)Google Scholar
  11. 11.
    Y. Cho, S. Kim, B. Park, C.-L. Lee, J.K. Kim, K.-S. Lee, I.Y. Choi, J.K. Kim, K. Zhang, S.H. Oh, J.H. Park, Nano Lett. 18(7), 4257–4262 (2018)Google Scholar
  12. 12.
    W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Chem. Rev. 116(12), 7159–7329 (2016)Google Scholar
  13. 13.
    D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B 231, 368–380 (2018)Google Scholar
  14. 14.
    B. Li, C. Lai, G. Zeng, L. Qin, H. Yi, D. Huang, C. Zhou, X. Liu, M. Cheng, P. Xu, C. Zhang, F. Huang, S. Liu, ACS Appl. Mater. Interfaces 10(22), 18824–18836 (2018)Google Scholar
  15. 15.
    T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, J. Catal. 352, 532–541 (2017)Google Scholar
  16. 16.
    J. Liu, B. Cheng, J. Yu, Phys. Chem. Chem. Phys. 18(45), 31175–31183 (2016)Google Scholar
  17. 17.
    S. Mukherjee, S. Ganguly, K. Manna, S. Mondal, S. Mahapatra, D. Das, Inorg. Chem. 57(7), 4050 (2018)Google Scholar
  18. 18.
    S. Chen, Y. Hu, S. Meng, X. Fu, Appl. Catal. B 150, 564–573 (2014)Google Scholar
  19. 19.
    S. Imada, T. Kuraoka, E. Tokumitsu, H. Ishiwara, Jpn. J. Appl. Phys. 40(2R), 666–671 (2001)Google Scholar
  20. 20.
    T. Li, L. Zhao, Y. He, J. Cai, M. Luo, J. Lin, Appl. Catal. B 129, 255–263 (2013)Google Scholar
  21. 21.
    H. She, H. Zhou, L. Li, Z. Zhao, M. Jiang, J. Huang, L. Wang, Q. Wang, ACS Sustain. Chem. Eng. 7(1), 650–659 (2019)Google Scholar
  22. 22.
    J. Wang, L. Tang, G. Zeng, Y. Liu, Y. Zhou, Y. Deng, J. Wang, B. Peng, ACS Sustain. Chem. Eng. 5(1), 1062–1072 (2017)Google Scholar
  23. 23.
    Z. Jiang, W. Wan, H. Li, S. Yuan, H. Zhao, P.K. Wong, Adv. Mater. 30(10), 1706108 (2018)Google Scholar
  24. 24.
    Q. Wang, W. Wang, L. Zhong, D. Liu, X. Cao, F. Cui, Appl. Catal. B 220, 290–302 (2018)Google Scholar
  25. 25.
    Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Solar RrL. 2(3), 1800006 (2018)Google Scholar
  26. 26.
    H. She, Y. Wang, H. Zhou, Y. Li, L. Wang, J. Huang, Q. Wang, ChemCatChem. 11(2), 753–759 (2019)Google Scholar
  27. 27.
    A.S. Patra, G. Gogoi, R.K. Sahu, M. Qureshi, Phys. Chem. Chem. Phys. 19(19), 12167–12174 (2017)Google Scholar
  28. 28.
    M. Jiang, Y. Shi, J. Huang, L. Wang, H. She, J. Tong, B. Su, Q. Wang, Eur. J. Inorg. Chem. 2018(17), 1834–1841 (2018)Google Scholar
  29. 29.
    Q. Wang, Y. Shi, Z. Du, J. He, J. Zhong, L. Zhao, H. She, G. Liu, B. Su, Eur. J. Inorg. Chem. 2015(24), 4108–4115 (2015)Google Scholar
  30. 30.
    S.-S. Yi, J.-M. Yan, B.-R. Wulan, S.-J. Li, K.-H. Liu, Q. Jiang, Appl. Catal. B 200, 477–483 (2017)Google Scholar
  31. 31.
    S. Acharya, S. Mansingh, K.M. Parida, Inorg. Chem. Front. 4(6), 1022–1032 (2017)Google Scholar
  32. 32.
    B. Luo, M. Chen, Z. Zhang, J. Xu, D. Li, D. Xu, W. Shi, Dalton T. 46(26), 8431–8438 (2017)Google Scholar
  33. 33.
    X. Zhang, Y. Yang, W. Huang, Y. Yang, Y. Wang, C. He, N. Liu, M. Wu, L. Tang, Mater. Res. Bull. 99, 349–358 (2018)Google Scholar
  34. 34.
    J. Luo, X. Zhou, X. Ning, L. Zhan, J. Chen, Z. Li, Sep. Purif. Technol. 201, 327–335 (2018)Google Scholar
  35. 35.
    Q. Wang, Y. Shi, L. Pu, Y. Ta, J. He, S. Zhang, J. Zhong, J. Li, B. Su, Appl. Surf. Sci. 367, 109–117 (2016)Google Scholar
  36. 36.
    J. Chu, X. Han, Z. Yu, Y. Du, B. Song, P. Xu, ACS Appl. Mater. Interfaces 10(24), 20404–20411 (2018)Google Scholar
  37. 37.
    S. Tonda, S. Kumar, M. Bhardwaj, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 10(3), 2667–2678 (2018)Google Scholar
  38. 38.
    A.T. Kozakov, A.G. Kochur, A.V. Nikolsky, K.A. Googlev, V.G. Smotrakov, V.V. Eremkin, J Electron Spectros Relat Phenomena. 184, 508–516 (2011)Google Scholar
  39. 39.
    A.G. Kochur, A.T. Kozakov, K.A. Googlev, A.V. Nikolskii, J Electron Spectros Relat Phenomena. 195, 1–7 (2014)Google Scholar
  40. 40.
    Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, ACS Appl. Mater. Interfaces. 2(10), 2915–2923 (2010)Google Scholar
  41. 41.
    L. Ge, C. Han, X. Xiao, L. Guo, Int. J. Hydrogen Energy 38(17), 6960–6969 (2013)Google Scholar
  42. 42.
    S. Zhuo, M. Shao, S.T. Lee, ACS Nano 6(2), 1059–1064 (2012)Google Scholar
  43. 43.
    L. Zhang, W. Yu, C. Han, J. Guo, Q.H. Zhang, H.Y. Xie, Q. Shao, Z.G. Sun, Z.H. Guo, J. Electrochem. Soc. 164(9), H651–H656 (2017)Google Scholar
  44. 44.
    X. Jiao, Z. Chen, X. Li, Y. Sun, S. Gao, W. Yan, C. Wang, Q. Zhang, Y. Lin, Y. Luo, Y. Xie, J. Am. Chem. Soc. 139(22), 7586–7594 (2017)Google Scholar
  45. 45.
    L. Liao, J. Zhu, X. Bian, L. Zhu, M.D. Scanlon, H.H. Girault, B. Liu, Adv. Funct. Mater. 23(42), 5326–5333 (2013)Google Scholar
  46. 46.
    L. Qian, L. Gu, L. Yang, H. Yuan, D. Xiao, Nanoscale 5(16), 7388–7396 (2013)Google Scholar
  47. 47.
    J. Wang, Y. Wang, W. Yang, X. Chen, Y. Zhu, Appl. Catal. B 220, 337–347 (2018)Google Scholar
  48. 48.
    L.Q. Ye, C.Q. Han, Z.Y. Ma, Y.M. Leng, J. Li, X.X. Ji, D.Q. Bi, H.Q. Xie, Z.X. Huang, Chem. Eng. J. 307, 311–318 (2017)Google Scholar
  49. 49.
    H. Zhao, P. Jiang, W. Cai, Chem. Asian J. 12(3), 361–365 (2017)Google Scholar
  50. 50.
    H. Yu, B. Huang, H. Wang, X. Yuan, L. Jiang, Z. Wu, J. Zhang, G. Zeng, J. Colloid Interface Sci. 522, 82–94 (2018)Google Scholar
  51. 51.
    A. Fujishima, X. Zhang, D. Tryk, Surf. Sci. Rep. 63(12), 515–582 (2008)Google Scholar
  52. 52.
    S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25(17), 10397–10401 (2009)Google Scholar
  53. 53.
    J.H. Pasch, J.H. Elbe, J. Food Sci. 44(1), 72–75 (1979)Google Scholar
  54. 54.
    C.-C. Pan, J.C.S. Wu, Mater. Chem. Phys. 100(1), 102–107 (2006)Google Scholar
  55. 55.
    X.J. Chen, Y.Z. Dai, X.Y. Wang, G. Jing, T.H. Liu, F.F. Li, J. Hazard. Mater. 292, 9–18 (2015)Google Scholar
  56. 56.
    Y. Gong, X. Zhao, J. Zhang, H. Zhang, B. Yang, K. Xiao, T. Guo, H. Shao, Y. Wang, G. Yu, Appl. Catal. B 233, 35–45 (2018)Google Scholar
  57. 57.
    Y.-F. Zhang, L.-G. Qiu, Y.-P. Yuan, Y.-J. Zhu, X. Jiang, J.-D. Xiao, Appl. Catal. B 144, 863–869 (2014)Google Scholar
  58. 58.
    Z. Xie, Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, G. Liu, Appl. Catal. B 229, 96–104 (2018)Google Scholar
  59. 59.
    N.I.M. Rosli, S.M. Lam, J.C. Sin, I. Satoshi, A.R. Mohamed, J. Environ. Eng. 144(2), 04017091 (2018)Google Scholar
  60. 60.
    W.-D. Oh, V.W.C. Chang, Z.-T. Hu, R. Goei, T.-T. Lim, Chem. Eng. J. 323, 260–269 (2017)Google Scholar
  61. 61.
    M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95(1), 69–96 (1995)Google Scholar
  62. 62.
    I. Tateishi, H. Katsumata, T. Suzuki, S. Kaneco, Mater. Lett. 201, 66–69 (2017)Google Scholar
  63. 63.
    S.F. Wang, H. Yang, T. Xian, X.Q. Liu, Catal. Commun. 12(7), 625–628 (2011)Google Scholar
  64. 64.
    J. Luo, X. Zhou, L. Ma, X. Xu, Appl. Surf. Sci. 390, 357–367 (2016)Google Scholar
  65. 65.
    R.G. Pearson, Inorg. Chem. 27(4), 734–740 (1988)Google Scholar
  66. 66.
    C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu, Y. Feng, ACS Nano 4(11), 6425–6432 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures, School of PhysicsNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations