Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 17, pp 15803–15824 | Cite as

Perylene derivatives for solar cells and energy harvesting: a review of materials, challenges and advances

  • Andreia Gerniski MacedoEmail author
  • Leticia Patricio Christopholi
  • Anderson E. X. Gavim
  • Jeferson Ferreira de Deus
  • Mohd Asri Mat Teridi
  • Abd. Rashid bin Mohd Yusoff
  • Wilson José da Silva


Herein, we present a review about recent advances in perylene diimide derivatives applied to organic solar cells and energy harvesting. Several organic and inorganic compounds, most of which are solution processed or thermally evaporated, are used for this purpose. Features such as energy level in relation to the donor material’s thermal and mechanical stability and processability are among the aspects that reflect the performance of these materials as electron acceptors or electrodes. Moreover, the donor/acceptor interface directly reflects the photovoltaic response. Therefore, device engineering efforts have been exerted to achieve proper acceptor distribution along the bulk of thin films or improve the compatibility at the donor/acceptor interface. This review is divided into subsections concerning the use of PDI molecules, PDI dimers/trimers/tetramers, bilayer devices, routes to improve the donor/acceptor interface, PDI-based polymers and energy harvesting. The reports show that PDI derivatives are suitable candidates for replacing fullerene derivatives in OSCs with reduced production cost and improved stability. Moreover, new PDI composites with graphene are promising cathodes for sodium batteries. Therefore, PDI derivatives are low cost and multifunctional materials employed to produce optoelectronic devices with numerous purposes.



This work was financially supported by Fundação Araucária (Grant No. 327/2014), Fundação Parque Tecnológico Itaipu (FPTI-BR, call FA 21/2018), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Grants PQ2 308129/2018-0, Equinor 440078/2019-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, PVEX 88881.171856/2018-01 and Finance Code 001) and Serrapilheira Institute (Grant Number Serra-1709-17054).

Supplementary material

10854_2019_2019_MOESM1_ESM.doc (1022 kb)
Supplementary material 1 (DOC 1022 kb)


  1. 1.
    C. Huang, S. Barlow, S.R. Marder, J. Org. Chem. 76, 2386–2407 (2011)Google Scholar
  2. 2.
    J. Wang, X. Zhan, Trends Chem. 2, 89 (2019). Google Scholar
  3. 3.
    C. Ehli, C. Oelsner, D.M. Guldi, A. Mateo-Alonso, M. Prato, C. Schmidt, C. Backes, F. Hauke, A. Hirsch, Nat. Chem. 1, 243–249 (2009)Google Scholar
  4. 4.
    S. Prathapan, S.I. Yang, J. Seth, M.A. Miller, D.F. Bocian, D. Holten, J.S. Lindsey, J. Phys. Chem. B 105, 8237–8248 (2001)Google Scholar
  5. 5.
    M.C.R. Delgado, E.G. Kim, D.A. da Silva Filho, J.L. Brédas, J. Am. Chem. Soc. 132, 3375 (2010)Google Scholar
  6. 6.
    X. Zhan, A. Facchetti, S. Barlow, T.J. Marks, M.A. Ratner, M.R. Wasielewski, S.R. Marder, Adv. Mater. 23, 268–284 (2011)Google Scholar
  7. 7.
    R. Schmidt, J.H. Oh, Y.S. Sun, M. Deppisch, A.M. Krause, K. Radacki, H. Braunschweig, M. Konemann, P. Erk, Z. Bao, F. Wurthner, J. Am. Chem. Soc. 131, 6215–6228 (2009)Google Scholar
  8. 8.
    Z. Liu, G. Zhang, Z. Cai, X. Chen, H. Luo, Y. Li, J. Wang, D. Zhang, Adv. Mater. 26, 6965–6977 (2014)Google Scholar
  9. 9.
    R.C. Savage, E. Orgiu, J.M. Mativetsky, W. Pisula, T. Schnitzler, C.L. Eversloh, C. Li, K. Mullen, P. Samori, Nanoscale 4, 2387–2393 (2012)Google Scholar
  10. 10.
    T. Brixner, R. Hildner, J. Köhler, C. Lambert, F. Würthner, Adv. Energy Mater. 7, 1700236 (2017)Google Scholar
  11. 11.
    S. Herbst, B. Soberats, P. Leowanawat, M. Stolte, M. Lehmann, F. Würthner, Nat. Commun. 9, 1–9 (2018)Google Scholar
  12. 12.
    J. Sung, P. Kim, B. Fimmel, F. Würthner, D. Kim, Nat. Commun. 6, 8646 (2015)Google Scholar
  13. 13.
    C. Kaufmann, W. Kim, A.N. Król, Y. Hong, D. Kim, F. Würthner, J. Am. Chem. Soc. 140(12), 4253–4258 (2018)Google Scholar
  14. 14.
    F. Würthner, C.R.S. Möller, B. Fimmel, S. Ogi, P. Leowanawat, D. Schmidt, Chem. Rev. 116(3), 962–1052 (2016)Google Scholar
  15. 15.
    J. Sung, A. Nowak-Król, F. Schlosser, B. Fimmel, W. Kim, D. Kim, F. Würthner, J. Am. Chem. Soc. 138, 9029 (2016)Google Scholar
  16. 16.
    E.A. Margulies, J.L. Logsdon, C.E. Miller, L. Ma, E. Simonoff, R.M. Young, G.C. Schatz, M.R. Wasielewski, J. Am. Chem. Soc. 139, 663 (2017)Google Scholar
  17. 17.
    F. Würthner, Chem. Comum. 122, 1564–1579 (2004)Google Scholar
  18. 18.
    P.E. Hartnett, E.A. Margulies, H.S.S.R. Matte, M.C. Hersam, T.J. Marks, M.R. Wasielewsk, Chem. Mater. 28(11), 3928–3936 (2016)Google Scholar
  19. 19.
    A.J. Makinen, A.R. Melnyk, S. Schoemann, R.L. Headrick, Y.L. Gao, Phys. Rev. B 60, 14683 (1999)Google Scholar
  20. 20.
    M. Bonchio, Z. Syrgiannis, M. Burian, N. Marino, E. Pizzolato, K. Dirian, F. Rigodanza, G.A. Volpato, G. La Ganga, N. Demitri, S. Berardi, H. Amenitsch, D.M. Guldi, S. Caramori, C.A. Bignozzi, A. Sartorel, M. Prato, Nat. Chem. 11, 146 (2019)Google Scholar
  21. 21.
    A. Adamow, L. Sznitko, E. Chrzumnicka, J. Stachera, A. Szukalski, T. Martynski, J. Mysliwiec, Sci. Rep. 9, 2143 (2019)Google Scholar
  22. 22.
    J.F. Kuhne, A.E. X. Gavim, A.G. Macedo, P.C. Rodrigues, B.B.M. Torres, J.F. de Deus, R.C. Kamikawachi, in 26th International Conference on Optical Fiber Sensors, OSA Technical Digest (Optical Society of America, 2018), paper WF9 (
  23. 23.
    T.M. Geng, D.K. Li, Z.M. Zhu, W.Y. Zhang, S.N. Ye, H. Zhu, Z.Q. Wang, Anal. Chim. Acta 1011, 77–85 (2018)Google Scholar
  24. 24.
    K. Liu, C. Shang, Z. Wang, Y. Qi, R. Miao, K. Liu, T. Liu, Y. Fang, Nat. Commun. 9, 1695 (2018)Google Scholar
  25. 25.
    Y. Hu, Z. Zhou, F. Zhao, X. Liu, Y. Gong, W. Xiong, M. Sillanpää, Sci. Rep. 8, 10277 (2018)Google Scholar
  26. 26.
    N.I. Georgiev, A.I. Said, R.A. Toshkova, R.D. Tzoneva, V.B. Bojinov, Dyes Pigment 160, 28–36 (2019)Google Scholar
  27. 27.
    J. He, H. Chen, Y. Guo, L. Wang, L. Zhu, H.E. Karahan, Y. Chen, Polymer 10, 559 (2018)Google Scholar
  28. 28.
    M. Abdelhameed, S. Aly, J.T. Lant, X. Zhang, P. Charpentier, Sci. Rep. 8, 17068 (2018)Google Scholar
  29. 29.
    L. Huang, Z. Wang, X. Zhu, L. Chi, Nanoscale Horiz. 1, 383–393 (2016)Google Scholar
  30. 30.
    Y. Huang, S. Zhang, G. Zhong, C. Li, Z. Liu, D. Jin, Phys. Chem. Chem. Phys. 20, 19037–19044 (2018)Google Scholar
  31. 31.
    C. Li, H. Zhai, X. Liu, W. Zhang, Y. Huang, J. Mater. Chem. C 3, 2778–2782 (2015)Google Scholar
  32. 32.
    A. Kalita, S. Hussain, A.H. Malik, N.V.V. Subbaraoa, P.K. Iyer, J. Mater. Chem. C 3, 10767–10774 (2015)Google Scholar
  33. 33.
    S. Choi, K.H. Cho, J.W. Namgoong, J.Y. Kim, E.S. Yoo, W. Lee, J.W. Jung, J. Choi, Dyes Pigment 163, 381–392 (2019)Google Scholar
  34. 34.
    F. Liu, T. Hou, X. Xu, L. Sun, J. Zhou, X. Zhao, S. Zang, Macromol. Rapid Commun. 39, 1700555 (2018)Google Scholar
  35. 35.
    X. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S.R. Marder, J. Am. Chem. Soc. 129, 7246–7247 (2007)Google Scholar
  36. 36.
    Y. Kim, E. Lim, Polymer 6, 383–407 (2014)Google Scholar
  37. 37.
    Y. Liu, M.D. Cole, Y. Jiang, P.Y. Kim, D. Nordlund, T. Emrick, T.P. Russell, Adv. Mater. 30, 1705976 (2018)Google Scholar
  38. 38.
    S.J. Hein, C. Edder, M. Kowalczyk, A. Borzenko, L. Mourokh, P. Lazarev, RSC Adv. 9, 361–364 (2019)Google Scholar
  39. 39.
    T. Huang, D. Lu, L. Ma, X. Xi, R. Liua, D. Wu, Chem. Eng. J. 349, 66–71 (2018)Google Scholar
  40. 40.
    Z. An, J. Yu, S.C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L.D.A. Siebbeles, B. Kippelen, S.R. Marder, Adv. Mater. 17, 2580 (2005)Google Scholar
  41. 41.
    P. Panayotatos, D. Parikhi, R. Sauers, G. Bird, A. Piechowski, S. Husain, Sol. Cells 18, 71 (1986)Google Scholar
  42. 42.
    C.W. Tang, Appl. Phys. Lett. 48, 183 (1986)Google Scholar
  43. 43.
    J. Hou, O. Inganäs, R.H. Friend, F. Gao, Nat. Mater. 17(2), 119–128 (2018)Google Scholar
  44. 44.
    C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.Y. Jen, S.R. Marder, X. Zhan, Nat. Rev. Mater. 3, 18003 (2018)Google Scholar
  45. 45.
    F.C. Krebs, T.D. Nielsen, J. Fyenbo, M. Wadstrøm, M.S. Pedersen, Energy Environ. Sci. 3, 512–525 (2010)Google Scholar
  46. 46.
    Q. Zhao, Z. Zhu, J. Chen, Adv. Mater. 29, 1607007 (2017)Google Scholar
  47. 47.
    B. Häupler, A. Wild, U.S. Schubert, Adv. Energy Mater. 5, 1402034 (2015)Google Scholar
  48. 48.
    W.J. da Silva, F.K. Schneider, A.R.M. Yusoff, J. Jang, Sci. Rep. 5, 18090 (2015)Google Scholar
  49. 49.
    F.C. Krebs, S.A. Gevorgyan, J. Alstrup, J. Mater. Chem. 19, 5442–5451 (2009)Google Scholar
  50. 50.
    F.C. Krebs, N. Espinosa, M. Hösel, R.R. Søndergaard, M. Jørgensen, M. Adv, Mater. 26, 29–39 (2014)Google Scholar
  51. 51.
    A.G. Macedo, C.F.N. Marchiori, I.L. Grova, L. Akcelrud, M. Koehler, L.S. Roman, Appl. Phys. Lett. 98, 253501-1–253501-3 (2011)Google Scholar
  52. 52.
    Q. Bao, X. Liu, S. Braun, M. Fahlman, Adv. Energy Mater. 4, 1301272 (2014)Google Scholar
  53. 53.
    T. Heumueller, W.R. Mateker, A. Distler, U.F. Fritze, R. Cheacharoen, W.H. Nguyen, M. Biele, M. Salvador, M. von Delius, H.J. Egelhaaf, M.D. McGehee, C.J. Brabec, Energy Environ. Sci. 9, 247–256 (2016)Google Scholar
  54. 54.
    W.R. Mateker, M.D. McGehee, Adv. Mater. 29, 1603940 (2017)Google Scholar
  55. 55.
    L. Ye, H. Hu, M. Ghasemi, T. Wang, B.A. Collins, J.H. Kim, K. Jiang, J.H. Carpenter, H. Li, Z. Li, T. McAfee, J. Zhao, X. Chen, J.L.Y. Lai, T. Ma, J.L. Bredas, H. Yan, H. Ade, Nat. Mater. 17, 253–260 (2018)Google Scholar
  56. 56.
    Y.J. Noh, Y.J. Choi, J.H. Jeong, S.S. Kim, K.U. Jeong, S.I. Na, Nanoscale 9, 17731–17736 (2017)Google Scholar
  57. 57.
    S.M. McAfee, A.J. Payne, S.V. Dayneko, G.P. Kini, C.E. Song, J.C. Lee, G.C. Welch, J. Mater. Chem. A 5, 16907–16913 (2017)Google Scholar
  58. 58.
    W.S. Shin, H.H. Jeong, M.K. Kim, S.H. Jin, M.R. Kim, J.K. Lee, J.W. Lee, Y.S. Gal, J. Mater. Chem. 16, 384–390 (2006)Google Scholar
  59. 59.
    T. Wang, A.D.F. Dunbar, P.A. Staniec, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, A.M. Donald, A.J. Ryan, R.A.L. Jones, D.G. Lidzey, Soft Matter 6, 4128 (2010)Google Scholar
  60. 60.
    J.J. Dittmer, E.A. Marseglia, R.H. Friend, Adv. Mater. 12, 1270 (2000)Google Scholar
  61. 61.
    R. Singh, E. Aluicio-Sarduy, Z. Kan, T. Ye, R.C.I. MacKenzie, P.E. Keivanidis, J. Mater. Chem. A 2, 14348–14353 (2014)Google Scholar
  62. 62.
    R. Singh, R. Shivanna, A. Iosifidis, H.J. Butt, G. Floudas, S. Narayan, P.E. Keivanidis, A.C.S. Appl, Mater. Interfaces 7, 24876–24886 (2015)Google Scholar
  63. 63.
    P.E. Hartnett, A. Timalsina, H.S.S.R. Matte, N. Zhou, X. Guo, W. Zhao, A. Facchetti, R.P.H. Chang, M.C. Hersam, M.R. Wasielewski, T.J. Marks, J. Am. Chem. Soc. 136, 16345–16356 (2014)Google Scholar
  64. 64.
    Y. Cai, L. Huo, X. Sun, D. Wei, M. Tang, Y. Sun, Adv. Energy Mater. 5, 1500032 (2015)Google Scholar
  65. 65.
    P. Krukowski, T. Tsuzuki, Y. Minagawa, N. Yajima, S. Chaunchaiyakul, M. Akai-Kasaya, A. Saito, Y. Miyake, M. Katayama, Y. Kuwahara, J. Phys. Chem. C 120(7), 3964–3977 (2016)Google Scholar
  66. 66.
    K.E. Brown, W.A. Salamant, L.E. Shoer, R.M. Young, M.R. Wasielewski, J. Phys. Chem. Lett. 5(15), 2588–2593 (2014)Google Scholar
  67. 67.
    T. Förster, Discuss. Faraday Soc. 27, 7–17 (1959)Google Scholar
  68. 68.
    C. Zhan, J. Yao, Chem. Mater. 28, 1948–1964 (2016)Google Scholar
  69. 69.
    C.L. Wang, H.L. Dong, W.P. Hu, Y.Q. Liu, D.B. Zhu, Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 112, 2208–2267 (2012)Google Scholar
  70. 70.
    G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 118, 3447–3507 (2018)Google Scholar
  71. 71.
    V. Kamm, G. Battagliarin, I.A. Howard, W. Pisula, A. Mavrinskiy, C. Li, K. Müllen, F. Laquai, Adv. Energy Mater. 1, 297–302 (2011)Google Scholar
  72. 72.
    T. Ye, R. Singh, H.J. Butt, G. Floudas, P.E. Keivanidis, A.C.S. Appl, Mater. Interfaces 5, 11844–11857 (2013)Google Scholar
  73. 73.
    A. Sharenko, C.M. Proctor, T.S. van der Poll, Z.B. Henson, T.Q. Nguyen, G.C. Bazan, Adv. Mater. 25, 4403–4406 (2013)Google Scholar
  74. 74.
    A. Sharenko, D. Gehrig, F. Laquai, T.Q. Nguyen, Chem. Mater. 26, 4109–4118 (2014)Google Scholar
  75. 75.
    X. Zhang, Z. Lu, L. Ye, C. Zhan, J. Hou, S. Zhang, B. Jiang, Y. Zhao, J. Huang, S. Zhang, Y. Liu, Q. Shi, Y. Liu, J. Yao, Adv. Mater. 25, 5791–5797 (2013)Google Scholar
  76. 76.
    M. Li, J. Lv, L. Wang, J. Liu, X. Yu, R. Xinga, L. Wang, Y. Geng, Y. Hana, Colloids Surf A 469, 326–332 (2015)Google Scholar
  77. 77.
    S. Shoaee, F. Deledalle, P.S. Tuladhar, R. Shivanna, S. Rajaram, K.S. Narayan, J.R. Durrant, J. Phys. Chem. Lett. 6, 201–205 (2015)Google Scholar
  78. 78.
    S. Shoaee, Z. An, X. Zhang, S. Barlow, S.R. Marder, W. Duffy, M. Heeney, I. McCulloch, J.R. Durrant, Chem. Commun. 36, 5445–5447 (2009)Google Scholar
  79. 79.
    S. Shoaee, T.M. Clarke, C. Huang, S. Barlow, S.R. Marder, M. Heeney, I. McCulloch, J.R. Durrant, J. Am. Chem. Soc. 132, 12919–12926 (2010)Google Scholar
  80. 80.
    P.E. Hartnett, H.S.S.R. Matte, N.D. Eastham, N.E. Jackson, Y. Wu, L.X. Chen, M.A. Ratner, R.P.H. Chang, M.C. Hersam, M.R. Wasielewski, T.J. Marks, Chem. Sci. 7, 3543–3555 (2016)Google Scholar
  81. 81.
    X. Zhang, M. Li, C. Dallagnese, G. Chena, X.F. Wang, Dyes Pigments 160, 285–291 (2019)Google Scholar
  82. 82.
    S. Li, H. Zhang, W. Zhao, L. Ye, H. Yao, B. Yang, S. Zhang, J. Hou, Adv. Energy Mater. 6, 1501991 (2016)Google Scholar
  83. 83.
    W. Fan, N. Liang, D. Meng, J. Feng, Y. Li, J. Houa, Z. Wang, Chem. Commun. 52, 11500–11503 (2016)Google Scholar
  84. 84.
    R. Singh, S.R. Suranagi, J. Lee, H. Lee, M. Kim, K. Cho, Sci. Rep. 8, 2849 (2018)Google Scholar
  85. 85.
    C.H. Wu, C.C. Chueh, Y.Y. Xi, H.L. Zhong, G.P. Gao, Z.H. Wang, L.D. Pozzo, T.C. Wen, A.K.Y. Jen, Adv. Funct. Mater. 25, 5326–5332 (2015)Google Scholar
  86. 86.
    Y. Lin, J. Wang, S. Dai, Y. Li, D. Zhu, X. Zhan, Adv. Energy Mater. 4, 1400420 (2014)Google Scholar
  87. 87.
    K.A. Luck, V.K. Sangwan, P.E. Hartnett, H.N. Arnold, M.R. Wasielewski, T.J. Marks, M.C. Hersam, Adv. Funct. Mater. 27, 1703805 (2017)Google Scholar
  88. 88.
    Y. Lin, Y. Wang, J. Wang, J. Hou, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 26, 5137–5142 (2014)Google Scholar
  89. 89.
    A.D. Hendsbee, J.P. Sun, W.K. Law, H. Yan, I.G. Hill, D.M. Spasyuk, G.C. Welch, Chem. Mater. 28, 7098–7109 (2016)Google Scholar
  90. 90.
    Y. Zhang, X. Guo, B. Guo, W. Su, M. Zhang, Y. Li, Adv. Funct. Mater. 27, 1603892 (2017)Google Scholar
  91. 91.
    Y. Zhong, M.T. Trinh, R. Chen, W. Wang, P.P. Khlyabich, B. Kumar, Q. Xu, C.Y. Nam, M.Y. Sfeir, C. Black, M.L. Steigerwald, Y.L. Loo, S. Xiao, F. Ng, X.Y. Zhu, C. Nuckolls, J. Am. Chem. Soc. 136, 15215–1522115216 (2014)Google Scholar
  92. 92.
    Y. Duan, X. Xu, H. Yan, W. Wu, Z. Li, Q. Peng, Adv. Mater. 29, 1605115 (2017)Google Scholar
  93. 93.
    D. Meng, H. Fu, C. Xiao, X. Meng, T. Winands, W. Ma, W. Wei, B. Fan, L. Huo, N.L. Doltsinis, Y. Li, Y. Sun, Z. Wang, J. Am. Chem. Soc. 138, 10184–10190 (2016)Google Scholar
  94. 94.
    B. Wang, W. Liu, H. Li, J. Mai, S. Liu, X. Lu, H. Li, M. Shi, C.Z. Li, H. Chen, J. Mater. Chem. A 5, 9396–9401 (2017)Google Scholar
  95. 95.
    Q. Wu, D. Zhao, J. Yang, V. Sharapov, Z. Cai, L. Li, N. Zhang, A. Neshchadin, W. Chen, L. Yu, Chem. Mater. 29, 1127–1133 (2017)Google Scholar
  96. 96.
    J. Zhang, Y. Li, J. Huang, H. Hu, G. Zhang, T. Ma, P.C.Y. Chow, H. Ade, D. Pan, H. Yan, J. Am. Chem. Soc. 139, 16092–16095 (2017)Google Scholar
  97. 97.
    G. Gao, N. Liang, H. Geng, W. Jiang, H. Fu, J. Feng, J. Hou, X. Feng, Z. Wang, J. Am. Chem. Soc. 139, 15914–15920 (2017)Google Scholar
  98. 98.
    G. Zhang, J. Zhao, P.C.Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, H. Yan, Chem. Rev. 118(7), 3447–3507 (2018)Google Scholar
  99. 99.
    S. Yu, Y. Chen, J. Wu, D. Xia, S. Hong, X. Wu, J. Yu, S. Zhang, A. Peng, H. Huang, A.C.S. Appl, Mater. Interfaces 10, 28812–28818 (2018)Google Scholar
  100. 100.
    L. Onsager, Phys. Rev. 54, 554 (1938)Google Scholar
  101. 101.
    A. Mishra, P. Bauerle, Angew. Chem. Int. Ed. 51, 2020–2067 (2012)Google Scholar
  102. 102.
    C.F.N. Marchiori, N.A.D. Yamamoto, I.R. Grova, A.G. Macedo, M. Paulus, C. Sternemann, S. Huotari, L. Akcelrud, L.S. Roman, M. Koehler, Org. Electron. 13, 2716–2726 (2012)Google Scholar
  103. 103.
    M. Koehler, N.A.D. Yamamoto, A.G. Macedo, D.Z. Grodniski, L.S. Roman, M.G.E. da Luz, Appl. Phys. Lett. 103, 033304 (2013)Google Scholar
  104. 104.
    L.M. Chen, Z. Xu, Z. Hong, Y. Yang, J. Mater. Chem. 20, 2575–2598 (2010)Google Scholar
  105. 105.
    J.Y. Kim, S.H. Kim, H.H. Lee, K.H. Lee, W.L. Ma, X. Gong, A.J. Heeger, Adv. Mater. 18, 572 (2006)Google Scholar
  106. 106.
    H.L. Yip, A.K.Y. Jen, Energy Environ. Sci. 5, 5994–6011 (2012)Google Scholar
  107. 107.
    G.J. Reynolds, M. Kratzer, M. Dubs, H. Felzer, R. Mamazza, Materials 5, 644–660 (2012)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Andreia Gerniski Macedo
    • 1
    Email author
  • Leticia Patricio Christopholi
    • 1
  • Anderson E. X. Gavim
    • 2
  • Jeferson Ferreira de Deus
    • 1
  • Mohd Asri Mat Teridi
    • 3
  • Abd. Rashid bin Mohd Yusoff
    • 4
  • Wilson José da Silva
    • 2
  1. 1.Graduate Program in Physics and Astronomy, Department of PhysicsFederal University of TechnologyCuritibaBrazil
  2. 2.Graduate Program in Electrical and Computer EngineeringFederal University of TechnologyCuritibaBrazil
  3. 3.Solar Energy Research InstituteNational University of MalaysiaBangiMalaysia
  4. 4.Department of PhysicsSwansea UniversitySwanseaUK

Personalised recommendations