The characterization of AlGaN nanowires prepared via chemical vapor deposition

  • Renjie Jiang
  • Xianquan MengEmail author


AlGaN ternary alloys exhibit some superior properties due to their tunable direct band gap and make them widely used in the fabrication of electronic and optoelectronic devices. Here, we successfully synthesized AlGaN nanowires by chemical vapor deposition using Al powder, Ga droplet and ammonia as starting materials with Pd as catalyst under a moderate growth temperature. The role of Pd catalyst during the growth has been systematically studied. We found that not only the Pd catalyst is the key to the growth of AlGaN nanowires in large scale, but also the sizes of catalyst nanoparticles have an important effect on diameter distribution of nanowires. XRD and HRTEM measurements confirmed that the synthesized AlGaN nanowires are the wurtzite structure and grown along [001] direction. The growth time and ammonia flow have important influence on the morphology of the AlGaN nanostructures. Based on the evolution of the nanostructures, we verified that the growth of the AlGaN nanostructures are affected by both VLS and VS mechanism and explained the growth process.



This work was financially supported by the National Natural Science Foundation of China under Grant (No. U1631110).


  1. 1.
    S. Zhao et al., An electrically injected AlGaN nanowire laser operating in the ultraviolet-C band. Appl. Phys. Lett. 107, 043101 (2015). CrossRefGoogle Scholar
  2. 2.
    B. Albrecht et al., AlGaN ultraviolet A and ultraviolet C photodetectors with very high specific detectivity D*. Jpn. J. Appl. Phys. 52(8), 08JB28 (2013). CrossRefGoogle Scholar
  3. 3.
    E. Song et al., Enhanced thermoelectric transport in modulation-doped GaN/AlGaN core/shell nanowires. Nanotechnology. 27(1), 015204 (2016). CrossRefGoogle Scholar
  4. 4.
    M. Djavid, Z. Mi, Enhancing the light extraction efficiency of AlGaN deep ultraviolet light emitting diodes by using nanowire structures. Appl. Phys. Lett. 108(5), 051102 (2016). CrossRefGoogle Scholar
  5. 5.
    K. Zhang et al., High-linearity AlGaN/GaN FinFETs for microwave power applications. IEEE Electron Device Lett. 38(5), 615–618 (2017). CrossRefGoogle Scholar
  6. 6.
    B. Albrecht et al., Improved AlGaN p-i-n photodetectors for monitoring of ultraviolet radiation. IEEE J. Sel. Top. Quantum Electron. 20(6), 166–172 (2014). CrossRefGoogle Scholar
  7. 7.
    B.H. Le et al., Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv. Mater. 28(38), 8446–8454 (2016). CrossRefGoogle Scholar
  8. 8.
    P. Pittet et al., PL characterization of GaN scintillator for radioluminescence-based dosimetry. Opt. Mater. 31(10), 1421–1424 (2009). CrossRefGoogle Scholar
  9. 9.
    A. Pansari, V. Gedam, B. Kumar Sahoo, Built-in-polarization field effect on lattice thermal conductivity of AlxGa1–xN/GaN heterostructure. J. Phys. Chem. Solids 87, 177–182 (2015). CrossRefGoogle Scholar
  10. 10.
    P.K. Kuo, G.W. Auner, Z.L. Wu, Microstructure and thermal conductivity of epitaxial AlN thin films. Thin Solid Films 253(1–2), 223–227 (1994). CrossRefGoogle Scholar
  11. 11.
    O. Ambacher et al., Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures. J. Appl. Phys. 85(6), 3222–3233 (1999). CrossRefGoogle Scholar
  12. 12.
    X. Li, J. Ni, R. Zhang, A thermodynamic model of diameter- and temperature-dependent semiconductor nanowire growth. Sci. Rep. 7(1), 15029 (2017). CrossRefGoogle Scholar
  13. 13.
    R. Calarco et al., Size-dependent photoconductivity in MBE-grown GaN − nanowires. Nano Lett. 5(5), 981–984 (2005). CrossRefGoogle Scholar
  14. 14.
    S. Zhao, Y.M. Woo, M. Bugnet et al., Three-dimensional quantum confinement of charge carriers in self-organized AlGaN nanowires: a viable route to electrically injected deep ultraviolet lasers. Nano Lett. 15(12), 7801–7807 (2015). CrossRefGoogle Scholar
  15. 15.
    R.S. Wagner, W.C. Ellis, Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett. 4, 89 (1964). CrossRefGoogle Scholar
  16. 16.
    B.A. Wacaser et al., Preferential interface nucleation: an expansion of the VLS growth mechanism for nanowires. Adv. Mater. 21(2), 153–165 (2009). CrossRefGoogle Scholar
  17. 17.
    H. Wang, G.S. Fischman, Role of liquid droplet surface diffusion in the vapor-liquid-solid whisker growth mechanism. J. Appl. Phys. 76(3), 1557–1562 (1994). CrossRefGoogle Scholar
  18. 18.
    Z.H. Lan et al., Nanohomojunction (GaN) and nanoheterojunction (InN) Nanorods on one-dimensional GaN nanowire substrates. Adv. Funct. Mater. 14(3), 233–237 (2004). CrossRefGoogle Scholar
  19. 19.
    J. Su et al., Growth of AlGaN nanowires by metalorganic chemical vapor deposition. Appl. Phys. Lett. 87(18), 183108 (2005). CrossRefGoogle Scholar
  20. 20.
    A. Pierret et al., Growth, structural and optical properties of AlGaN nanowires in the whole composition range. Nanotechnology. 24(11), 115704 (2013). CrossRefGoogle Scholar
  21. 21.
    A.K. Sivadasan et al., Optical properties of monodispersed AlGaN nanowires in the single-prong growth mechanism. Cryst. Growth Des. 15(3), 1311–1318 (2015). CrossRefGoogle Scholar
  22. 22.
    H.K. Seong et al., Single-crystalline AlGaN: Mn nanotubes and their magnetism. Adv. Mater. 18(22), 3019–3023 (2006). CrossRefGoogle Scholar
  23. 23.
    L. Lari et al., Direct observation by transmission electron microscopy of the influence of Ni catalyst-seeds on the growth of GaN–AlGaN axial heterostructure nanowires. J. Cryst. Growth 327(1), 27–34 (2011). CrossRefGoogle Scholar
  24. 24.
    L. Lari et al., Nanoscale compositional analysis of Ni-based seed crystallites associated with GaN nanowire growth. Physica E 40(7), 2457–2461 (2008). CrossRefGoogle Scholar
  25. 25.
    V.K. Lazarov, GaN, AlGaN, HfO2 based radial heterostructure nanowires. J. Phys. 209, 012011 (2010). Google Scholar
  26. 26.
    R.J. Jiang, X.Q. Meng, Synthesis of aluminum nitride nanostructures via chemical vapor deposition method with nickel as catalyst. Revista Mexicana de Fisica 64(1), 67–71 (2018). CrossRefGoogle Scholar
  27. 27.
    C. He et al., Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range. ACS Nano 5(2), 1291–1296 (2011). CrossRefGoogle Scholar
  28. 28.
    V. Thakur, S.M. Shivaprasad, Electronic structure of GaN nanowall network analysed by XPS. Appl. Surf. Sci. 327, 389–393 (2015). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Technology, and Center for Nanoscience and Nanotechnology School of Physics and TechnologyWuhan UniversityWuhanPeople’s Republic of China
  2. 2.Hubei Nuclear Solid Physics Key LaboratoryHubeiPeople’s Republic of China

Personalised recommendations