Advertisement

Characterization and electrical properties of tausonite (SrTiO3) in nano ceramic composites

  • Fatma H. MarghaEmail author
  • Reham M. M. Morsi
  • Esmat M. A. Hamzawy
Article
  • 15 Downloads

Abstract

Tausonite phase was crystallized in SrTiO3 ceramic/borosilicate glass composite upon heat treatment at 1000–1100 °C range. Four samples containing 100/0, 90/10, 70/30 and 50/50 ratios from SrTiO3 ceramic/borosilicate glass were prepared. XRD, SEM/EDX, HR-TEM, SAED, ac conductivity (σac), dielectric constant (ε′), porosity and bulk density were measured. The sintering process permits the precipitation of tausonite phase solely in case of SrTiO3 ceramic ratio between 100 and 70%; whereas, rutile and cristobalite were developed in case of equal ratios of SrTiO3 ceramic and borosilicate glass. Investigating the microcrystalline structure revealed the spread of cubic tausonite crystals in micro- and nano-scale size in the samples containing 100, 90 and 70% SrTiO3 ceramic. The decrease of SrTiO3 content to 50% led to formation tetragonal crystals of both rutile and cristobalite phases. The dielectric constant and ac conductivity of the samples have been studied in the temperature range from room temperature up to 300 °C. The activation energy attained values between 0.12 and 0.74 eV. The sample with the highest percentage of SrTiO3 phase (100 wt%) exhibited the utmost dielectric constant and that with 30 wt% glass fraction showed dielectric constant mainly temperature independent, which permits its application in electronic devices in wide range of temperatures.

Notes

References

  1. 1.
    M. Pena, J. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2018 (2001)CrossRefGoogle Scholar
  2. 2.
    L.G. Tejuca, J.L. Fierro, Properties and Applications of Perovskite-Type Oxides (CRC Press, New York, 1992)CrossRefGoogle Scholar
  3. 3.
    M.S. Wrighton, A.B. Ellis, P.T. Wolczanski, D.L. Morse, H.B. Abrahamson, D.S. Ginley, Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential. J. Am. Chem. Soc. 98, 2774–2779 (1976)CrossRefGoogle Scholar
  4. 4.
    J. Fernandes, D. Melo, L. Zinner, C. Salustiano, Z. Silva, A. Martinelli, M. Cerqueira, C.A. Junior, E. Longo, M. Bernardi, Low-temperature synthesis of single-phase crystalline LaNiO3 perovskite via Pechini method. Mater. Lett. 53, 122–125 (2002)CrossRefGoogle Scholar
  5. 5.
    X. Niu, H. Li, G. Liu, Preparation, characterization and photocatalytic properties of REFeO3 (RE = Sm, Eu, Gd). J. Mol. Catal. A 232, 89–93 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Ghaffari, P.Y. Tan, M.E. Oruc, O.K. Tan, M.S. Tse, M. Shannon, Effect of ball milling on the characteristics of nano structure SrFeO3 powder for photocatalytic degradation of methylene blue under visible light irradiation and its reaction kinetics. Catal. Today 161, 70–77 (2011)CrossRefGoogle Scholar
  7. 7.
    N.Q. Minh, Solid oxide fuel cell technology—features and applications. Solid State Ion. 174, 271–277 (2004)CrossRefGoogle Scholar
  8. 8.
    N. Keller, J. Mistrik, Š. Višňovský, D. Schmool, Y. Dumont, P. Renaudin, M. Guyot, R. Krishnan, Magneto-optical Faraday and Kerr effect of orthoferrite thin films at high temperatures. Eur. Phys. J. B 21, 67–73 (2001)CrossRefGoogle Scholar
  9. 9.
    N. Kojima, K. Tsushima, Recent progress in magneto-optics and research on its application. Low Temp. Phys. 28, 480–490 (2002)CrossRefGoogle Scholar
  10. 10.
    H. Sakakima, M. Satomi, E. Hirota, H. Adachi, Spin-valves using perovskite antiferromagnets as the pinning layers. IEEE Trans. Magn. 35, 2958–2960 (1999)CrossRefGoogle Scholar
  11. 11.
    C. Alcock, R. Doshi, Y. Shen, Perovskite electrodes for sensors. Solid State Ion. 51, 281–289 (1992)CrossRefGoogle Scholar
  12. 12.
    R. Eglitis, S. Piskunov, E. Heifets, E.A. Kotomin, G. Borstel, Ab initio study of the SrTiO3, BaTiO3 and PbTiO3 (0 0 1) surfaces. Ceram. Int. 30, 1989–1992 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Taylor, A. Samokhvalov, Water as probe molecule for midgap states in nanocrystalline strontium titanate by conventional and synchronous luminescence spectroscopy under ambient conditions. Spectrochim. Acta Part A 174, 54–61 (2017)CrossRefGoogle Scholar
  14. 14.
    C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993)CrossRefGoogle Scholar
  15. 15.
    J. Zhao, X. Wu, L. Li, X. Li, Preparation and electrical properties of SrTiO3 ceramics doped with M2O3–PbO–CuO. Solid-state Electron. 48, 2287–2291 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Gao, H. Zhao, X. Li, Y. Cheng, X. Zhou, F. Cui, Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency. J. Power Sources 185, 26–31 (2008)CrossRefGoogle Scholar
  17. 17.
    W. Xuewen, Z. Zhiyong, Z. Shuixian, Preparation of nano-crystalline SrTiO3 powder in sol-gel process. Mater. Sci. Eng. B 86, 29–33 (2001)CrossRefGoogle Scholar
  18. 18.
    S.-J. Shih, W.-L. Tzeng, Manipulation of morphology of strontium titanate particles by spray pyrolysis. Powder Technol. 264, 291–297 (2014)CrossRefGoogle Scholar
  19. 19.
    R.F. Gonçalves, A.P. Moura, M. Godinho, E. Longo, M.A.C. Machado, D. de Castro, M.S. Li, A.P.A. Marques, Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 41, 3549–3554 (2015)CrossRefGoogle Scholar
  20. 20.
    K. Fujinami, K. Katagiri, J. Kamiya, T. Hamanaka, K. Koumoto, Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents. Nanoscale 2, 2080–2083 (2010)CrossRefGoogle Scholar
  21. 21.
    M. Kim, S.-A. Hong, N. Shin, Y.H. Lee, Y. Shin, Synthesis of strontium titanate nanoparticles using supercritical water. Ceram. Int. 42, 17853–17857 (2016)CrossRefGoogle Scholar
  22. 22.
    T. Murtaza, J. Ali, M.S. Khan, K. Asokan, Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites. J. Mater. Sci. 29, 2110–2119 (2018)Google Scholar
  23. 23.
    K.-W. Paik, J.-G. Hyun, S. Lee, K.-W. Jang, Epoxy/BaTiO3 (SrTiO3) composite films and pastes for high dielectric constant and low tolerance embedded capacitors in organic substrates, in 2006 1st Electronic Systemintegration Technology Conference, IEEE, 2006, pp. 794–801Google Scholar
  24. 24.
    M. Airimioaei, M. Buscaglia, I. Tredici, U. Anselmi-Tamburini, C. Ciomaga, L. Curecheriu, A. Bencan, V. Buscaglia, L. Mitoseriu, SrTiO 3–BaTiO 3 nanocomposites with temperature independent permittivity and linear tunability fabricated using field-assisted sintering from chemically synthesized powders. J. Mater. Chem. C 5, 9028–9036 (2017)CrossRefGoogle Scholar
  25. 25.
    X. Shan, L. Zhang, X. Yang, Z.-Y. Cheng, Dielectric composites with a high and temperature-independent dielectric constant. J. Adv. Ceram. 1, 310–316 (2012)CrossRefGoogle Scholar
  26. 26.
    A. Kumaryadav, C.R. Gautam, A review on crystallisation behaviour of perovskite glass ceramics. Adv. Appl. Ceram. 113, 193–207 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Wu, M. Cao, Z. Shen, H. Yu, Z. Yao, D. Luo, H. Liu, Effect of glass additive on microstructure and dielectric properties of SrTiO3 ceramics. Ferroelectrics 356, 95–101 (2007)CrossRefGoogle Scholar
  28. 28.
    M. Zawrah, E. Hamzawy, Effect of cristobalite formation on sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 28, 123–130 (2002)CrossRefGoogle Scholar
  29. 29.
    R.M. Morsi, F.H. Margha, E.M. Hamzawy, Preparation and electrical characterization of Zn-titanate/borosilicate glass composites. Silicon (2018)Google Scholar
  30. 30.
    R.M. Morsi, M.A. Basha, Effect of heat-treatment on the electrical and dielectric properties of a TiO2-containing lithia–calcia–silica glass and glass ceramics. Mater. Chem. Phys. 129, 1233–1239 (2011)CrossRefGoogle Scholar
  31. 31.
    A. El-Kheshen, M. Zawrah, Sinterability, microstructure and properties of glass/ceramic composites. Ceram. Int. 29, 251–257 (2003)CrossRefGoogle Scholar
  32. 32.
    X. Zhang, H. Wen, X. Chen, Y. Wu, S. Xiao, Study on the thermal and dielectric properties of SrTiO3/epoxy nanocomposites. Energies 10, 692 (2017)CrossRefGoogle Scholar
  33. 33.
    R.M. Morsi, S. Ibrahim, S. Abo-Naf, M.M. Morsi, Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates. J. Mater. Sci. 27, 4147–4156 (2016)Google Scholar
  34. 34.
    U. Megha, G. Varghese, K. Shijina, Room temperature AC impedance and dielectric studies of Bi and Sr doped PrCo0.6Fe0.4O3 perovskites. Process. Appl. Ceram. 11, 52–59 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Jin, L. Wang, Z. Wang, B. Huang, Q. Zhang, Z. Fu, Dielectric properties of modified SrTiO3/PTFE composites for microwave RF antenna applications. J. Mater. Sci. 26, 7431–7437 (2015)Google Scholar
  36. 36.
    A. Kumar, U. Naithani, B. Semwal, Dielectric behaviour of BaxSr1–xTiO3 perovskites. Sri Lankan J. Phys. 3, 63–73 (2002)CrossRefGoogle Scholar
  37. 37.
    R. Henson, A. Pointon, Growth of single crystal Ba0.65Sr0.35TiO3 by solvent zone melting. J. Cryst. Growth 26, 174–176 (1974)CrossRefGoogle Scholar
  38. 38.
    S. Miura, M. Marutake, H. Unoki, H. Uwe, T. Sakudo, Composition dependence of the phase transition temperatures in the mixed crystal systems near SrTiO3. J. Phys. Soc. Jpn. 38, 1056–1060 (1975)CrossRefGoogle Scholar
  39. 39.
    A. Lurio, E. Stern, Measurements of the dielectric constant of BaTiO3 single crystals in the paraelectric region at X band. J. Appl. Phys. 31, 1805–1809 (1960)CrossRefGoogle Scholar
  40. 40.
    O. Thakur, D. Kumar, O. Parkash, L. Pandey, Dielectric and microstructural behaviour of strontium titanate borosilicate glass ceramic system. Bull. Mater. Sci. 18, 577–585 (1995)CrossRefGoogle Scholar
  41. 41.
    S.A. Abdel-Hameed, R.M. Morsi, F.H. Margha, Preparation, crystallization and electrical properties of 35CuO·(35 − X) MnO·XBi2O3·30SiO2 system (X = 0–20 mol%). J. Mater. Sci. 28, 4351–4361 (2017)Google Scholar
  42. 42.
    G. Devidas, T. Sankarappa, M.P. Kumar, S. Kumar, AC conductivity in rare earth ions doped vanadophosphate glasses. J. Mater. Sci. 43, 4856–4861 (2008)CrossRefGoogle Scholar
  43. 43.
    K.B. Naidu, T.S. Sarmash, M. Maddaiah, A.G. Kumar, D.J. Rani, V.S. Samyuktha, L. Obulapathi, T. Subbarao, Structural and electrical properties of PbO-doped SrTiO3 ceramics. J. Ovonic Res. 11, 79–84 (2015)Google Scholar
  44. 44.
    A. Prasad, A. Basu, Dielectric and impedance properties of sintered magnesium aluminum silicate glass-ceramic. J. Adv. Ceram. 2, 71–78 (2013)CrossRefGoogle Scholar
  45. 45.
    X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs. J. Power Sources 166, 47–52 (2007)CrossRefGoogle Scholar
  46. 46.
    T. Miruszewski, B. Trawiński, M. Gałka, J. Morzy, B. Bochentyn, J. Karczewski, P. Gdaniec, M. Gazda, B. Kusz, Correlation between structural and electrical properties in highly porous (Y, Sr)(Ti, Nb) O3 − δ SOFC anodes. Mater. Sci. 32, 331–340 (2014)Google Scholar
  47. 47.
    J. Karczewski, B. Riegel, M. Gazda, P. Jasinski, B. Kusz, Electrical and structural properties of Nb-doped SrTiO3 ceramics. J. Electroceram. 24, 326–330 (2010)CrossRefGoogle Scholar
  48. 48.
    A. Singh, K. Prasad, A. Prasad, Effects of Sr2+ doping on the electrical properties of (Bi0.5Na0.5)0.94Ba0.06TiO3 ceramics. Process. Appl. Ceram. 9, 33–42 (2015)CrossRefGoogle Scholar
  49. 49.
    V. Sharma, R. Kaur, M. Singh, R. Selvamani, S.M. Gupta, V.S. Tiwari, A. Karnal, A. Singh, Conductivity relaxation and oxygen vacancies-related electron hopping mechanism in Pb1-xLax/2Smx/2Ti1-xFexO3 solid solutions. J. Asian Ceram. Soc. 6, 222–231 (2018)CrossRefGoogle Scholar
  50. 50.
    E.L. Korn, R. Simon, Explained residual variation, explained risk, and goodness of fit. Am. Stat. 45, 201–206 (1991)Google Scholar
  51. 51.
    J. Stare, Some properties of R2 in ordinary least squares regression, in Contributions to Methodology and Statistics, ed. by A. Ferligoj, A. Kramberger (FDV, Ljubljana, 1995), pp. 133–145Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fatma H. Margha
    • 1
    Email author
  • Reham M. M. Morsi
    • 2
  • Esmat M. A. Hamzawy
    • 1
  1. 1.Glass Research DepartmentNational Research CentreGizaEgypt
  2. 2.Physical Chemistry DepartmentNational Research CentreGizaEgypt

Personalised recommendations