Advertisement

Inorganic metal iodide mediated solution phase surface passivation for quantum dot solar cell

  • Srikanth Reddy Tulsani
  • Saptam Ganguly
  • Arup K. RathEmail author
Article
  • 85 Downloads

Abstract

The recent advancements in solution phase surface passivation of quantum dots (QDs) enable the development of production compatible QD ink for their large-area deposition, of a single coating. Surface passivation and colloidal stability of the QDs in polar solvents have been achieved using inorganic–organic hybrid halometallate ligands. The inorganic halometallate anions bind to the unsaturated metal sites of the QD surface, while the organic counter cations provide the colloidal stability and charge balance to the QDs. Organic ligands is a reason for concern though for the stability of the QD solar cells processed from solution-phase ligand exchange. Here, we report a solution-phase ligand exchange strategy using alkali metal halides as a substitution for the organic counterpart to facilitate solution-phase ligand exchange using all-inorganic halometallate ligands. Considering the limited solubility of the alkali halides in organic solvents a two-stage ligand-exchanged process has been commenced to help remove the excess ligands, preserve the electronic purity and allow the formation of highly passivated QD films from solution-phase deposition. A twofold increase in solar cell performance is shown with the help of the modified ligand exchange approach. The solar cell properties are further analysed through detailed characterizations of the QD solar cells.

Notes

Acknowledgements

We thank the funding agencies to carry out the present work; SERB extramural funding, India (No: EMR/2015/002415), DST Nanomission, India (No: SR/NM/NT-1011/2105 (G)) and UGC SRF fellowship no 2121251076.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

Supplementary material

10854_2019_1992_MOESM1_ESM.docx (1.7 mb)
Supplementary material 1 (DOCX 1791 kb)

References

  1. 1.
    D.V. Talapin, J.S. Lee, M.V. Kovalenko, E.V. Shevchenko, Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110(1), 389–458 (2010)CrossRefGoogle Scholar
  2. 2.
    S. Coe, W.K. Woo, M. Bawendi, V. Bulovic, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917), 800–803 (2002)CrossRefGoogle Scholar
  3. 3.
    H.B. Shen, W.R. Cao, N.T. Shewmon, C.C. Yang, L.S. Li, J.G. Xue, High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes. Nano Lett. 15(2), 1211–1216 (2015)CrossRefGoogle Scholar
  4. 4.
    S.M. Jung, H.L. Kang, J.K. Won, J. Kim, C. Hwang, K. Ahn, I. Chung, B.K. Ju, M.G. Kim, S.K. Park, High-performance quantum dot thin-film transistors with environmentally benign surface functionalization and robust defect passivation. ACS Appl. Mater. Interfaces 10(4), 3739–3749 (2018)CrossRefGoogle Scholar
  5. 5.
    D.V. Talapin, C.B. Murray, PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science 310(5745), 86–89 (2005)CrossRefGoogle Scholar
  6. 6.
    G. Konstantatos, I. Howard, A. Fischer, S. Hoogland, J. Clifford, E. Klem, L. Levina, E.H. Sargent, Ultrasensitive solution-cast quantum dot photodetectors. Nature 442(7099), 180–183 (2006)CrossRefGoogle Scholar
  7. 7.
    R. Saran, R.J. Curry, Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 10(2), 81–92 (2016)CrossRefGoogle Scholar
  8. 8.
    C. Dang, J. Lee, C. Breen, J.S. Steckel, S. Coe-Sullivan, A. Nurmikko, Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films. Nat. Nanotechnol. 7(5), 335–339 (2012)CrossRefGoogle Scholar
  9. 9.
    J.M. Luther, M. Law, M.C. Beard, Q. Song, M.O. Reese, R.J. Ellingson, A.J. Nozik, Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8(10), 3488–3492 (2008)CrossRefGoogle Scholar
  10. 10.
    C.H.M. Chuang, P.R. Brown, V. Bulovic, M.G. Bawendi, Improved performance and stability in quantum dot solar cells through band alignment engineering. Nat. Mater. 13(8), 796–801 (2014)CrossRefGoogle Scholar
  11. 11.
    J.X. Xu, O. Voznyy, M.X. Liu, A.R. Kirmani, G. Walters, R. Munir, M. Abdelsamie, A.H. Proppe, A. Sarkar, F.P.G. de Arquer, M.Y. Wei, B. Sun, M. Liu, O. Ouellette, R. Quintero-Bermudez, J. Li, J. Fan, L.N. Quan, P. Todorovic, H.R. Tan, S. Hoogland, S.O. Kelley, M. Stefik, A. Amassian, E.H. Sargent, 2D matrix engineering for homogeneous quantum dot coupling in photovoltaic solids. Nat. Nanotechnol. 13(6), 456–462 (2018)CrossRefGoogle Scholar
  12. 12.
    C.R. Kagan, E. Lifshitz, E.H. Sargent, D.V. Talapin, Building devices from colloidal quantum dots. Science (2016).  https://doi.org/10.1126/science.aac5523 Google Scholar
  13. 13.
    P.N. Goswami, D. Mandal, A.K. Rath, The role of surface ligands in determining the electronic properties of quantum dot solids and their impact on photovoltaic figure of merits. Nanoscale 10(3), 1072–1080 (2018)CrossRefGoogle Scholar
  14. 14.
    A. Karani, L. Yang, S. Bai, M.H. Futscher, H.J. Snaith, B. Ehrler, N.C. Greenham, D.W. Di, Perovskite/colloidal quantum dot tandem solar cells: theoretical modeling and monolithic structure. ACS Energy Lett. 3(4), 869–874 (2018)CrossRefGoogle Scholar
  15. 15.
    Y.L. Li, P.N. Yeh, S. Sharma, S.A. Chen, Promotion of performances of quantum dot solar cell and its tandem solar cell with low bandgap polymer (PTB7-Th):PC71BM by water vapor treatment on quantum dot layer on its surface. J. Mater. Chem. A 5(40), 21528–21535 (2017)CrossRefGoogle Scholar
  16. 16.
    X.L. Zhang, E.M.J. Johansson, Reduction of charge recombination in PbS colloidal quantum dot solar cells at the quantum dot/ZnO interface by inserting a MgZnO buffer layer. J. Mater. Chem. A 5(1), 303–310 (2017)CrossRefGoogle Scholar
  17. 17.
    Z.J. Ning, H.P. Dong, Q. Zhang, O. Voznyy, E.H. Sargent, Solar cells based on inks of n-type colloidal quantum dots. ACS Nano 8(10), 10321–10327 (2014)CrossRefGoogle Scholar
  18. 18.
    M.A. Boles, D. Ling, T. Hyeon, D.V. Talapin, The surface science of nanocrystals. Nat. Mater. 15(2), 141–153 (2016)CrossRefGoogle Scholar
  19. 19.
    M.A. Hines, G.D. Scholes, Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 15(21), 1844–1849 (2003)CrossRefGoogle Scholar
  20. 20.
    J. Joo, H.B. Na, T. Yu, J.H. Yu, Y.W. Kim, F.X. Wu, J.Z. Zhang, T. Hyeon, Generalized and facile synthesis of semiconducting metal sulfide nanocrystals. J. Am. Chem. Soc. 125(36), 11100–11105 (2003)CrossRefGoogle Scholar
  21. 21.
    M.X. Liu, O. Voznyy, R. Sabatini, F.P.G. de Arquer, R. Munir, A.H. Balawi, X.Z. Lan, F.J. Fan, G. Walters, A.R. Kirmani, S. Hoogland, F. Laquai, A. Amassian, E.H. Sargent, Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16(2), 258–263 (2017)CrossRefGoogle Scholar
  22. 22.
    D. Zhitomirsky, O. Voznyy, L. Levina, S. Hoogland, K.W. Kemp, A.H. Ip, S.M. Thon, E.H. Sargent, Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime. Nat. Commun. 5, 3803 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Tang, K.W. Kemp, S. Hoogland, K.S. Jeong, H. Liu, L. Levina, M. Furukawa, X.H. Wang, R. Debnath, D.K. Cha, K.W. Chou, A. Fischer, A. Amassian, J.B. Asbury, E.H. Sargent, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10(10), 765–771 (2011)CrossRefGoogle Scholar
  24. 24.
    K.Y. Lu, Y.J. Wang, Z.K. Liu, L. Han, G.Z. Shi, H.H. Fang, J. Chen, X.C. Ye, S. Chen, F. Yang, A.G. Shulga, T. Wu, M.F. Gu, S.J. Zhou, J. Fan, M.A. Loi, W.L. Ma, High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “solvent-curing”. Adv. Mater. 30(25), 1707572 (2018)CrossRefGoogle Scholar
  25. 25.
    A. Kiani, B.R. Sutherland, Y. Kim, O. Ouellette, L. Levina, G. Walters, C.T. Dinh, M.X. Liu, O. Voznyy, X.Z. Lan, A.J. Labelle, A.H. Ip, A. Proppe, G.H. Ahmed, O.F. Mohammed, S. Hoogland, E.H. Sargent, Single-step colloidal quantum dot films for infrared solar harvesting. Appl. Phys. Lett. 109(18), 183105 (2016)CrossRefGoogle Scholar
  26. 26.
    Z.Y. Yang, A. Janmohamed, X.Z. Lan, F.P.G. de Arquer, O. Voznyy, E. Yassitepe, G.H. Kim, Z.J. Ning, X.W. Gong, R. Comin, E.H. Sargent, Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano Lett. 15(11), 7539–7543 (2015)CrossRefGoogle Scholar
  27. 27.
    D. Mandal, A.K. Rath, Quantum dots coupled to an oriented two-dimensional crystalline matrix for solar cell application. ACS Appl. Mater. Interfaces 10(45), 39074–39082 (2018)CrossRefGoogle Scholar
  28. 28.
    X.L. Zhang, J.D. Zhang, D. Phuyal, J. Du, L. Tian, V.A. Oberg, M.B. Johansson, U.B. Cappel, O. Karis, J.H. Liu, H. Rensmo, G. Boschloo, E.M.J. Johansson, Inorganic CsPbI3 perovskite coating on PbS quantum dot for highly efficient and stable infrared light converting solar cells. Adv. Energy Mater. 8(6), 1702049 (2018)CrossRefGoogle Scholar
  29. 29.
    Q.A. Akkerman, S.G. Motti, A.R.S. Kandada, E. Mosconi, V. D’Innocenzo, G. Bertoni, S. Marras, B.A. Kamino, L. Miranda, F. De Angelis, A. Petrozza, M. Prato, L. Manna, Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138(3), 1010–1016 (2016)CrossRefGoogle Scholar
  30. 30.
    L.K. Ono, E.J. Juarez-Perez, Y.B. Qi, Progress on perovskite materials and solar cells with mixed cations and halide anions. ACS Appl. Mater. Interfaces. 9(36), 30197–30246 (2017)CrossRefGoogle Scholar
  31. 31.
    W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen, Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. J. Phys. Chem. B 109(19), 9505–9516 (2005)CrossRefGoogle Scholar
  32. 32.
    A.H. Ip, S.M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L.R. Rollny, G.H. Carey, A. Fischer, K.W. Kemp, I.J. Kramer, Z.J. Ning, A.J. Labelle, K.W. Chou, A. Amassian, E.H. Sargent, Hybrid passivated colloidal quantum dot solids. Nat. Nanotechnol. 7(9), 577–582 (2012)CrossRefGoogle Scholar
  33. 33.
    N. Zhao, T.P. Osedach, L.Y. Chang, S.M. Geyer, D. Wanger, M.T. Binda, A.C. Arango, M.G. Bawendi, V. Bulovic, Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 4(7), 3743–3752 (2010)CrossRefGoogle Scholar
  34. 34.
    M.J. Speirs, D.N. Dirin, M. Abdu-Aguye, D.M. Balazs, M.V. Kovalenko, M.A. Loi, Temperature dependent behaviour of lead sulfide quantum dot solar cells and films. Energy Environ. Sci. 9(9), 2916–2924 (2016)CrossRefGoogle Scholar
  35. 35.
    C.H.M. Chuang, A. Maurano, R.E. Brandt, G.W. Hwang, J. Jean, T. Buonassisi, V. Bulovic, M.G. Bawendi, Open-circuit voltage deficit, radiative sub-bandgap states, and prospects in quantum dot solar cells. Nano Lett. 15(5), 3286–3294 (2015)CrossRefGoogle Scholar
  36. 36.
    S. Pradhan, A. Stavrinadis, S. Gupta, Y. Bi, F. Di Stasio, G. Konstantatos, Trap-state suppression and improved charge transport in PbS quantum dot solar cells with synergistic mixed-ligand treatments. Small 13(21), 1700598 (2017)CrossRefGoogle Scholar
  37. 37.
    D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137(24), 7843–7850 (2015)CrossRefGoogle Scholar
  38. 38.
    D. Zherebetskyy, M. Scheele, Y.J. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos, L.W. Wang, Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344(6190), 1380–1384 (2014)CrossRefGoogle Scholar
  39. 39.
    Y.M. Cao, A. Stavrinadis, T. Lasanta, D. So, G. Konstantatos, The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1, 16035 (2016)CrossRefGoogle Scholar
  40. 40.
    J. Tang, L. Brzozowski, D.A.R. Barkhouse, X.H. Wang, R. Debnath, R. Wolowiec, E. Palmiano, L. Levina, A.G. Pattantyus-Abraham, D. Jamakosmanovic, E.H. Sargent, Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano 4(2), 869–878 (2010)CrossRefGoogle Scholar
  41. 41.
    I. Moreels, K. Lambert, D. Smeets, D. De Muynck, T. Nollet, J.C. Martins, F. Vanhaecke, A. Vantomme, C. Delerue, G. Allan, Z. Hens, Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3(10), 3023–3030 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CSIR-National Chemical LaboratoryPuneIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia

Personalised recommendations