Advertisement

Synthesis and characterization of polyimide/liquid acrylonitrile-butadiene rubber composite films

  • Xin Mao
  • Bo Wu
  • Fangfang Zhang
  • Chunyan Wang
  • Ting Deng
  • Xianzhong TangEmail author
Article

Abstract

High energy storage composite films were synthesized by solution blending polyimide (PI) and liquid acrylonitrile-butadiene rubber (LNBR). Experimental results showed that the composite films exhibited outstanding mechanical, thermal, and dielectric properties. When the content of LNBR was 5 wt%, the composite films showed remarkable thermal properties, superior tensile strength (106.02 MPa) and tensile modulus (2.57 GPa), high dielectric constant (4.79, 1 kHz), and low dielectric loss (0.0075, 1 kHz). Noticeably, the breakdown strength still remains at a high level (303.59 kV mm−1). In addition, the dielectric constant of the composite films decreased slightly with the increasing frequency. The dielectric loss were less than 0.025 within the testing frequency range. In particular, the composite films exhibited high energy storage density (up to 1.95 J cm−3). This study indicated that the PI/LNBR composite films will be a promising candidate for high energy storage materials.

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10854_2019_1978_MOESM1_ESM.pdf (142 kb)
Supplementary material 1 (PDF 141 kb)

References

  1. 1.
    Z.M. Dang, M.S. Zheng, J.W. Zha, Small 12, 1688 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Luo, Y. Shen, S. Yu, Y. Wan, W.H. Liao, R. Sun, C.P. Wong, Energy Environ. Sci. 10, 137 (2017)CrossRefGoogle Scholar
  3. 3.
    C. Wu, X. Huang, X. Wu, L. Xie, K. Yang, P. Jiang, Nanoscale 5, 3847 (2013)CrossRefGoogle Scholar
  4. 4.
    Q. Wang, L. Zhu, J. Polym. Sci. B 49, 1421 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Yan, Y. Fu, X. Wu, X. Xue, C. Li, L. Zhang, Solid State Ion. 336, 95 (2019)CrossRefGoogle Scholar
  6. 6.
    X. Xue, H. Yan, Y. Fu, Solid State Ion. 335, 1 (2019)CrossRefGoogle Scholar
  7. 7.
    Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Adv. Mater. 25, 6334 (2013)CrossRefGoogle Scholar
  8. 8.
    Q. Li, K. Han, M.R. Gadinski, G. Zhang, Q. Wang, Adv. Mater. 26, 6244 (2014)CrossRefGoogle Scholar
  9. 9.
    P. Barber, S. Balasubramanian, Y. Anguchamy, S. Gong, A. Wibowo, H. Gao, H.J. Ploehn, H.C. Zur Loye, Materials 2, 1697 (2009)CrossRefGoogle Scholar
  10. 10.
    S.H. Yao, J.K. Yuan, P. Gonon, J. Bai, S. Pairis, A. Sylvestre, J. Appl. Phys. 111, 104109 (2012)CrossRefGoogle Scholar
  11. 11.
    J.Y. Li, L. Zhang, S. Ducharme, Appl. Phys. Lett. 90, 132901 (2007)CrossRefGoogle Scholar
  12. 12.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Prog. Mater Sci. 57, 660 (2012)CrossRefGoogle Scholar
  13. 13.
    B. Chu, X. Zhou, K. Ren, B. Neese, M. Lin, Q. Wang, F. Bauer, Q.M. Zhang, Science 313, 334 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Rahimabady, S. Chen, K. Yao, F.E.H. Tay, L. Lu, Appl. Phys. Lett. 99, 142901 (2011)CrossRefGoogle Scholar
  15. 15.
    M. Rabuffi, G. Picci, IEEE Trans. Plasma Sci. 30, 1939 (2002)CrossRefGoogle Scholar
  16. 16.
    K. Yu, Y.J. Niu, Y.Y. Bai, Y.C. Zhou, H. Wang, Appl. Phys. Lett. 102, 102903 (2013)CrossRefGoogle Scholar
  17. 17.
    H.X. Tang, Y.R. Lin, H.A. Sodano, Adv. Energy Mater. 2, 469 (2012)CrossRefGoogle Scholar
  18. 18.
    L.A. Fredin, Z. Li, M.A. Ratner, M.T. Lanagan, T.J. Marks, Adv. Mater. 24, 5946 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Li, S.I. Seok, B. Chu, F. Dogan, Q. Zhang, Q. Wang, Adv. Mater. 21, 217 (2009)CrossRefGoogle Scholar
  20. 20.
    G. Wu, J. Li, K. Wang, Y. Wang, C. Pan, A. Feng, J. Mater. Sci. Mater. El. 28, 6544 (2017)CrossRefGoogle Scholar
  21. 21.
    X. Fang, X. Liu, Z.K. Cui, J. Qian, J. Pan, X. Li, Q. Zhuang, J. Mater. Chem. A 3, 10005 (2015)CrossRefGoogle Scholar
  22. 22.
    H.Y. Lu, C.Y. Chou, J.H. Wu, J.J. Lin, G.S. Liou, J. Mater. Chem. C 3, 3629 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Yang, H. Fan, Y. Jiao, Z. Cai, P. Zhang, Y. Li, Compos. Sci. Technol. 138, 161 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Ruan, D. Yang, W. Guo, L. Zhang, S. Li, Y. Shang, Y. Wu, M. Zhang, H. Wang, Appl. Surf. Sci. 439, 186 (2018)CrossRefGoogle Scholar
  25. 25.
    X. Zhi, Y. Mao, Z. Yu, S. Wen, Y. Li, L. Zhang, T.W. Chan, L. Liu, Compos. A 76, 194 (2015)CrossRefGoogle Scholar
  26. 26.
    M. Ruan, D. Yang, W. Guo, L. Zhang, Y. Wu, S. Li, Mater. Lett. 219, 109 (2018)CrossRefGoogle Scholar
  27. 27.
    S. Zhu, W. Zhang, J. Zhang, J. Mater. Sci. Mater. El. 29, 6519 (2018)CrossRefGoogle Scholar
  28. 28.
    X.F. Lei, M.T. Qiao, L.D. Tian, Y.H. Chen, Q.Y. Zhang, Corros. Sci. 98, 560 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Wu, Y. Cheng, Z. Wang, K. Wang, A. Feng, J. Mater. Sci. Mater. El. 28, 576 (2017)CrossRefGoogle Scholar
  30. 30.
    H. Liu, J. Wang, C. Gong, F. Cheng, G. Wang, S. Wen, G. Zheng, J. Appl. Polym. Sci. 133, 44119 (2016)Google Scholar
  31. 31.
    J. Xia, J. Li, G. Zhang, X. Zeng, F. Niu, H. Yang, R. Sun, C. Wong, Compos. A 80, 21 (2016)CrossRefGoogle Scholar
  32. 32.
    H.B. Park, J.H. Kim, J.K. Kim, Y.M. Lee, Macromol. Rapid Commun. 23, 544 (2002)CrossRefGoogle Scholar
  33. 33.
    Z.M. Dang, H.P. Xu, H.Y. Wang, Appl. Phys. Lett. 90, 012901 (2007)CrossRefGoogle Scholar
  34. 34.
    B.H. Fan, J.W. Zha, D. Wang, J. Zhao, Z.M. Dang, Appl. Phys. Lett. 100, 012903 (2012)CrossRefGoogle Scholar
  35. 35.
    K. Li, H. Wang, F. Xiang, W. Liu, H. Yang, Appl. Phys. Lett. 95, 202904 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, Y. Wang, Y. Deng, M. Li, J. Bai, Mater. Lett. 72, 9 (2012)CrossRefGoogle Scholar
  37. 37.
    L. Zhang, X. Shan, P. Wu, Z. Cheng, Appl. Phys. A 107, 597 (2012)CrossRefGoogle Scholar
  38. 38.
    J. Chon, S. Ye, K.J. Cha, S.C. Lee, Y.S. Koo, J.H. Jung, Y.K. Kwon, Chem. Mater. 22, 5445 (2010)CrossRefGoogle Scholar
  39. 39.
    Z. Jia, B. Wang, A. Feng, J. Liu, C. Zhang, M. Zhang, G. Wu, Ceram. Int. 45, 15854 (2019)CrossRefGoogle Scholar
  40. 40.
    T. Zhou, J.W. Zha, R.Y. Cui, B.H. Fan, J.K. Yuan, Z.M. Dang, ACS Appl. Mater. Interfaces 3, 2184 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Applied Chemistry, University of Electronic Science & Technology of ChinaChengduChina

Personalised recommendations