Advertisement

Construction of CuO/CdS composite nanostructure for photodegradation of pollutants in sewage

  • Qiao Chen
  • Tinglan Wang
  • Boyou Wang
  • Xiande Yang
  • Fei Li
  • Yongqian WangEmail author
Article
  • 14 Downloads

Abstract

The composite of semiconductor photocatalytic materials can effectively improve the solar energy utilization efficiency and quantum efficiency. Therefore, composite semiconductor materials have gradually become one of the most promising photocatalyst for solving water pollution problems. In this work, CuO nanowire arrays were prepared on Cu substrate by a thermal oxidation method, then CuO/CdS composite nanostructure was synthesized through an SILAR technique sequentially. The morphology, micro-area element composition, phase structure and optical properties of CuO/CdS nanostructure were characterized by field emission scanning electron microscopy, energy-dispersive spectroscopy, X-ray diffraction, ultraviolet–visible and photoluminescence spectroscopy respectively. Based on the test results, we systematically discussed the effects of several experimental conditions such as copper substrate, annealing temperature and reaction time on the properties and structure of CuO/CdS composite nanostructure. The resultant binary CuO/CdS composite nanostructure exhibited more excellent photocatalytic activity than pure CuO nanowire arrays both in the photodegradation of simulated contaminant methylene blue (MB) and practical pollutants of sewage.

Notes

Acknowledgement

This work was supported by the Open Research Foundation of Engineering Research Center of Nano-Geomaterials of Ministry of Education (No. NGM2019KF026) and Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control (No. 2017B030301012). The financial support was gratefully appreciated.

Supplementary material

10854_2019_1969_MOESM1_ESM.docx (3.5 mb)
Supplementary material 1 (DOCX 3587 kb)

References

  1. 1.
    M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452(7185), 301–310 (2008)CrossRefGoogle Scholar
  2. 2.
    L.H. Yu, Y. Huang, G.C. Xiao, D.Z. Li, Application of long wavelength visible light (lambda > 650 nm) in photocatalysis with a p-CuO-n-In2O3 quantum dot heterojunction photocatalyst. J. Mater. Chem. A 1(34), 9637–9640 (2013)CrossRefGoogle Scholar
  3. 3.
    P. Liu, R. Bao, D. Fang, J. Yi, L. Li, A facile synthesis of CNTs/Cu2O-CuO heterostructure composites by spray pyrolysis and its visible light responding photocatalytic properties. Adv. Powder Technol. 29(9), 2027–2034 (2018)CrossRefGoogle Scholar
  4. 4.
    Y.C. Chang, J.Y. Guo, C.M. Chen, H.W. Di, C.C. Hsu, Construction of CuO/In2S3/ZnO heterostructure arrays for enhanced photocatalytic efficiency. Nanoscale 9(35), 13235–13244 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Nano-photocatalytic materials: possibilities and challenges. Adv. Mater. 24(2), 229–251 (2012)CrossRefGoogle Scholar
  6. 6.
    D.P. Macwan, P.N. Dave, S. Chaturvedi, A review on nano-TiO2 sol–gel type syntheses and its applications. J. Mater. Sci. 46(11), 3669–3686 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018)CrossRefGoogle Scholar
  8. 8.
    J.W. Kang, B.H. Kim, H. Song, Y.R. Jo, S.H. Hong, G.Y. Jung, B.J. Kim, S.J. Park, C.H. Cho, Radial multi-quantum well ZnO nanorod arrays for nanoscale ultraviolet light-emitting diodes. Nanoscale 10(31), 14812–14818 (2018)CrossRefGoogle Scholar
  9. 9.
    P. Ghamgosar, F. Rigoni, S.J. You, I. Dobryden, M.G. Kohan, A.L. Pellegrino, I. Concina, N. Almqvist, G. Malandrino, A. Vomiero, ZnO-Cu2O core-shell nanowires as stable and fast response photodetectors. Nano Energy 51, 308–316 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Schneider, M. Matsuoka, M. Takeuchi, J.L. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Tian, P. Hao, N. Wei, H.Z. Cui, H. Liu, 3D Bi2MoO6 Nanosheet/TiO2 Nanobelt heterostructure: enhanced photocatalytic activities and photoelectochemistry performance. ACS Catal 5(8), 4530–4536 (2015)CrossRefGoogle Scholar
  12. 12.
    Y. Xie, J.F. Wu, G.J. Jing, H. Zhang, S.H. Zeng, X.P. Tan, X.Y. Zou, J. Wen, H.Q. Su, C.J. Zhong, P.X. Cui, Structural origin of high catalytic activity for preferential CO oxidation over CuO/CeO2 nanocatalysts with different shapes. Appl. Catal. B 239, 665–676 (2018)CrossRefGoogle Scholar
  13. 13.
    Y. Ma, C.Y. Zhang, P. Yang, X.Y. Li, L.L. Tong, F. Huang, J.Y. Yue, B. Tang, A CuO-functionalized NMOF probe with a tunable excitation wavelength for selective detection and imaging of H2S in living cells. Nanoscale 10(33), 15793–15798 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Noothongkaew, O. Thumthan, K.S. An, UV-photodetectors based on CuO/ZnO nanocomposites. Mater. Lett. 233, 318–323 (2018)CrossRefGoogle Scholar
  15. 15.
    Y. Zhu, X. Zhou, J.B. Xu, X.X. Ma, Y.H. Ye, G.C. Yang, K.L. Zhang, In situ preparation of explosive embedded CuO/Al/CL20 nanoenergetic composite with enhanced reactivity. Chem. Eng. J. 354, 885–895 (2018)CrossRefGoogle Scholar
  16. 16.
    M.T. Greiner, J. Cao, T.E. Jones, S. Beeg, K. Skorupska, E.A. Carbonio, H. Sezen, M. Amati, L. Gregoratti, M.G. Willinger, A. Knop-Gericke, R. Schlogl, Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation. ACS Catal. 8(3), 2286–2295 (2018)CrossRefGoogle Scholar
  17. 17.
    J.J.D. Leon, D.M. Fryauf, R.D. Cormia, M.X.M. Zhang, K. Samuels, R.S. Williams, N.P. Kobayashi, Reflectometry-ellipsometry reveals thickness, growth rate, and phase composition in oxidation of copper. ACS Appl. Mater. Int. 8(34), 22337–22344 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Shah, M. Ranjan, S.K. Gupta, A. Satyaprasad, S. Chaki, Y. Sonvane, Reaction temperature dependent shape-controlled studies of copper-oxide nanocrystals. Mater. Res. Express 5(6), 645–656 (2018)CrossRefGoogle Scholar
  19. 19.
    N. Abraham, A. Rufus, C. Unni, D. Philip, Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method. Spectrochim. Acta A 200, 116–126 (2018)CrossRefGoogle Scholar
  20. 20.
    S.H. Wu, G.L. Fu, W.Q. Lv, J.K. Wei, W.J. Chen, H.Q. Yi, M. Gu, X.D. Bai, L. Zhu, C. Tan, Y.C. Liang, G.L. Zhu, J.R. He, X.Q. Wang, K.H.L. Zhang, J. Xiong, W.D. He, A single-step hydrothermal route to 3D hierarchical Cu2O/CuO/rGO nanosheets as high-performance anode of lithium-ion batteries. Small 14(5), 1702667 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Manjakkal, C.G. Nunez, W.T. Dang, R. Dahiya, Flexible self-charging supercapacitor based on graphene-Ag-3D graphene foam electrodes. Nano Energy 51, 604–612 (2018)CrossRefGoogle Scholar
  22. 22.
    K.D. Diao, J. Xiao, Z. Zheng, X.D. Cui, Enhanced sensing performance and mechanism of CuO nanoparticle-loaded ZnO nanowires: comparison with ZnO-CuO core-shell nanowires. Appl. Surf. Sci. 459, 630–638 (2018)CrossRefGoogle Scholar
  23. 23.
    Q. Xin, A. Papavasilou, N. Boukos, A. Glisenti, J.P.H. Li, Y. Yang, C.J. Philippopoulos, E. Poulakis, F.K. Katsaros, V. Meynen, P. Cool, Preparation of CuO/SBA-15 catalyst by the modified ammonia driven deposition precipitation method with a high thermal stability and an efficient automotive CO and hydrocarbons conversion. Appl. Catal. B 223, 103–115 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Das, V.C. Srivastava, An overview of the synthesis of CuO-ZnO nanocomposite for environmental and other applications. Nanotechnol. Rev. 7(3), 267–282 (2018)CrossRefGoogle Scholar
  25. 25.
    Z.F. Wang, F. Li, H.T. Wang, A. Wang, S.M. Wu, An enhanced ultra-fast responding ethanol gas sensor based on Ag functionalized CuO nanoribbons at room-temperature. J. Mater. Sci. 29(19), 16654–16659 (2018)Google Scholar
  26. 26.
    R. Ranjbar-Karimi, A. Bazmandegan-Shamili, A. Aslani, K. Kaviani, Sonochemical synthesis, characterization and thermal and optical analysis of CuO nanoparticles. Physica B 405(15), 3096–3100 (2010)CrossRefGoogle Scholar
  27. 27.
    D.Y. Han, H.Y. Yang, C.Y. Zhu, F.H. Wang, Controlled synthesis of CuO nanoparticles using TritonX-100-based water-in-oil reverse micelles. Powder Technol. 185(3), 286–290 (2008)CrossRefGoogle Scholar
  28. 28.
    T. Xu, W. Jin, Z.Z. Wang, H.Y. Cheng, X.H. Huang, X.Y. Guo, Y. Ying, Y.P. Wu, F. Wang, Y. Wen, H.F. Yang, Electrospun CuO-nanoparticles-modified polycaprolactone@polypyrrole fibers: an application to sensing glucose in saliva. Nanomater. Basel 8(3), 133 (2018)CrossRefGoogle Scholar
  29. 29.
    B.W. Zhang, G. Yang, C.J. Li, K. Huang, J.S. Wu, S.J. Hao, Y.Z. Huang, Electrochemical behaviors of hierarchical copper nano-dendrites in alkaline media. Nano Res. 11(8), 4225–4231 (2018)CrossRefGoogle Scholar
  30. 30.
    J.J.Y. Sung, S.C. Ng, F.K.L. Chan, H.M. Chiu, H.S. Kim, T. Matsuda, S.S.M. Ng, J.Y.W. Lau, S. Zheng, S. Adler, N. Reddy, K.G. Yeoh, K.K.F. Tsoi, J.Y.L. Ching, E.J. Kuipers, L. Rabeneck, G.P. Young, R.J. Steele, D. Lieberman, K.L. Goh, An updated asia pacific consensus recommendations on colorectal cancer screening. Gut 64(1), 121–132 (2015)CrossRefGoogle Scholar
  31. 31.
    X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Doping effects of Co(2+) ions on ZnO nanorods and their photocatalytic properties. Nanotechnology 19(21), 215703 (2008)CrossRefGoogle Scholar
  32. 32.
    L.H. Yu, W. Chen, D.Z. Li, J.B. Wang, Y. Shao, M. He, P. Wang, X.Z. Zheng, Inhibition of photocorrosion and photoactivity enhancement for ZnO via specific hollow ZnO core/ZnS shell structure. Appl. Catal. B 164, 453–461 (2015)CrossRefGoogle Scholar
  33. 33.
    Y. Zhu, R. Wang, W. Zhang, H. Ge, L. Li, CdS and PbS nanoparticles co-sensitized TiO2 nanotube arrays and their enhanced photoelectrochemical property. Appl. Surf. Sci. 315, 149–153 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Yuan, Y. Wang, R. Mema, G. Zhou, Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59(6), 2491–2500 (2011)CrossRefGoogle Scholar
  35. 35.
    R. Mema, L. Yuan, Q. Du, Y. Wang, G. Zhou, Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512(1–3), 87–91 (2011)CrossRefGoogle Scholar
  36. 36.
    Y.H. Zhang, Y.L. Li, B.B. Jiu, F.L. Gong, J.L. Chen, S.M. Fang, H.L. Zhang, Highly enhanced photocatalytic H2 evolution of Cu2O microcube by coupling with TiO2 nanoparticles. Nanoscale 30, 145401 (2019)Google Scholar
  37. 37.
    J.L. Chen, P. Gao, H. Wang, L.F. Han, Y.H. Zhang, P.Y. Wang, N.Q. Jia, A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J. Mater. Chem. C 6(15), 3937–3944 (2018)CrossRefGoogle Scholar
  38. 38.
    J.L. Chen, H. Wang, G.L. Huang, Z.Q. Zhang, L.F. Han, W. Song, M.Y. Li, Y.H. Zhang, Facile synthesis of urchin-like hierarchical Nb2O5 nanospheres with enhanced visible light photocatalytic activity. J. Alloys Compd. 728, 19–28 (2017)CrossRefGoogle Scholar
  39. 39.
    J.D. Holmes, K.P. Johnston, R.C. Doty, B.A. Korgel, Control of thickness and orientation of solution-grown silicon nanowires. Science 287(5457), 1471–1473 (2000)CrossRefGoogle Scholar
  40. 40.
    W.S. Shi, Y.F. Zheng, N. Wang, C.S. Lee, S.T. Lee, Microstructures of gallium nitride nanowires synthesized by oxide-assisted method. Chem. Phys. Lett. 345(5–6), 377–380 (2001)CrossRefGoogle Scholar
  41. 41.
    X.C. Jiang, T. Herricks, Y.N. Xia, CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2(12), 1333–1338 (2002)CrossRefGoogle Scholar
  42. 42.
    Y.L. Cao, P.F. Hu, D.Z. Jia, Phase- and shape-controlled hydrothermal synthesis of CdS nanoparticles, and oriented attachment growth of its hierarchical architectures. Appl. Surf. Sci. 265, 771–777 (2013)CrossRefGoogle Scholar
  43. 43.
    Y.Q. Wang, T.T. Jiang, D.W. Meng, D.G. Wang, M.H. Yu, Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Appl. Surf. Sci. 355, 191–196 (2015)CrossRefGoogle Scholar
  44. 44.
    A.A. Dubale, W.N. Su, A.G. Tamirat, C.J. Pan, B.A. Aragaw, H.M. Chen, C.H. Chen, B.J. Hwang, The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J. Mater. Chem. A 2(43), 18383–18397 (2014)CrossRefGoogle Scholar
  45. 45.
    W. Septina, R.R. Prabhakar, R. Wick, T. Moehl, S.D. Tilley, Stabilized solar hydrogen production with CuO/CdS heterojunction thin film photocathodes. Chem. Mater. 29(4), 1735–1743 (2017)CrossRefGoogle Scholar
  46. 46.
    A.A. El Mel, M. Buffière, N. Bouts, E. Gautron, P.Y. Tessier, K. Henzler, Growth control, structure, chemical state, and photoresponse of CuO-CdS core-shell heterostructure nanowires. Nanotechnology 24(26), 265603 (2013)CrossRefGoogle Scholar
  47. 47.
    G. Sun, Y. Zhang, Q. Kong, X. Zheng, J. Yu, X. Song, CuO-induced signal amplification strategy for multiplexed photoelectrochemical immunosensing using CdS sensitized ZnO nanotubes arrays as photoactive material and AuPd alloy nanoparticles as electron sink. Biosens. Bioelectron. 66, 565–571 (2015)CrossRefGoogle Scholar
  48. 48.
    L. Xia, L. Xu, J. Song, R. Xu, D. Liu, B. Dong, CdS quantum dots modified CuO inverse opal electrodes for ultrasensitive electrochemical and photoelectrochemical biosensor. Sci Rep 5, 10838 (2015)CrossRefGoogle Scholar
  49. 49.
    J.M. Du, M.K. Yang, F.F. Zhang, X.C. Cheng, H.R. Wu, H.C. Qin, Q.S. Jian, X.L. Lin, K.D. Li, D.J. Kang, Enhanced charge separation of CuS and CdS quantum-dot-cosensitized porous TiO2-based photoanodes for photoelectrochemical water splitting. Ceram. Int. 44(3), 3099–3106 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  2. 2.Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution ControlShenzhenPeople’s Republic of China

Personalised recommendations