Morphological and electrical characterizations of dip coated porous TiO2 thin films with different concentrations of thiourea additives for resistive switching applications

  • S. Roy
  • N. Tripathy
  • P. K. Sahu
  • J. P. KarEmail author


Dip coating process was used as a synthesis technique for the fabrication of porous TiO2 thin films, where titanium (IV) n-butoxide precursor was used along with Pluronic F-127 and thiourea additives. In this research, thiourea to precursor molar ratio was varied from 0 to 10%, whereas the concentration of the F127 was kept as 3 mM. The post-synthesis structural, morphological, optical and electrical characteristics of the porous TiO2 thin films were investigated. The FESEM micrographs have shown the surface modulation with the different molar ratio of thiourea, whereas the XRD patterns have depicted the evolution of anatase phase of the TiO2 films. The capacitance–voltage measurements were carried out to study the charge densities associated with the TiO2 films. It has been revealed that the films, deposited with 8% molar ratio of thiourea, have possessed higher density of oxide and interface charges. The films, synthesized at 8% thiourea, have also shown better bipolar resistive switching properties as revealed from the current–voltage characteristics of TiO2 memristors.



The authors are thankful to Prof. J. Dutta Majumder, IIT Kharagpur for the FESEM characterizations.


  1. 1.
    M.V. Landau, Transition metal oxides. Annu. Rev. Phys. Chem. 34, 2789 (2003). Google Scholar
  2. 2.
    J. Meyer, S. Hamwi, M. Kröger, W. Kowalsky, T. Riedl, A. Kahn, Transition metal oxides for organic electronics: energetics, device physics and applications. Adv. Mater. 24, 5408–5427 (2012). CrossRefGoogle Scholar
  3. 3.
    A. Chen, Y.-H. Chu, R.-W. Li, T. Fix, J.-M. Hu, Functional oxide thin films and nanostructures: growth, interface, and applications. J. Nanomater. 2016, 1–2 (2016). Google Scholar
  4. 4.
    T.P. St, D.W.Goodman Clair, ChemInform Abstract: metal nanoclusters supported on metal oxide thin films—bridging the materials gap. ChemInform (2010). Google Scholar
  5. 5.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014). CrossRefGoogle Scholar
  6. 6.
    D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tiron, A. Manole, C. Adomnitei, Low temperature TiO2 based gas sensors for CO2. Ceram. Int. 42, 7353–7359 (2016). CrossRefGoogle Scholar
  7. 7.
    K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44, 8269–8285 (2005). CrossRefGoogle Scholar
  8. 8.
    D. Ielmini, C. Cagli, F. Nardi, Y. Zhang, Nanowire-based resistive switching memories: devices, operation and scaling. J. Phys. D 46, 074006 (2013). CrossRefGoogle Scholar
  9. 9.
    E. Gale, TiO2 -based memristors and ReRAM: materials, mechanisms and models (a review). Semicond. Sci. Technol. 29(10), 104004 (2014). CrossRefGoogle Scholar
  10. 10.
    H.Y. Jeong, J.Y. Lee, S.Y. Choi, Interface-engineered amorphous TiO2-based resistive memory devices. Adv. Funct. Mater. 20, 3912–3917 (2010). CrossRefGoogle Scholar
  11. 11.
    D.M. Smith, The effects of dopants on the properties of metal oxides. Solid State Ion. 129(1–4), 5–12 (2000). CrossRefGoogle Scholar
  12. 12.
    Y.-C. Pan, T.-F. Young, D.-S. Gan, J.-C. Lou, T.-C. Chang, Y.-E. Syu, S.M. Sze, R. Zhang, K.-H. Chen, K.-C. Chang, S.-Y. Huang, J.-H. Chen, J. Huang, H.-C. Huang, T.-M. Tsai, D.-H. Bao, Space electric field concentrated effect for Zr:SiO2 RRAM devices using porous SiO2 buffer layer. Nanoscale Res. Lett. 8, 2–6 (2013). CrossRefGoogle Scholar
  13. 13.
    W. Shi, W. Yang, Q. Li, S. Gao, P. Shang, J.K. Shang, The synthesis of nitrogen/sulfur co-doped TiO2 nanocrystals with a high specific surface area and a high percentage of 001 facets and their enhanced visible-light photocatalytic performance. Nanoscale Res. Lett. 7, 1–9 (2012). CrossRefGoogle Scholar
  14. 14.
    A. Kafizas, C. Crick, I.P. Parkin, The combinatorial atmospheric pressure chemical vapour deposition (cAPCVD) of a gradating substitutional/interstitial N-doped anatase TiO2 thin-film; UVA and visible light photocatalytic activities. J. Photochem. Photobiol., A 216, 156–166 (2010). CrossRefGoogle Scholar
  15. 15.
    Z. Michalcik, M. Horakova, P. Spatenka, S. Klementova, M. Zlamal, N. Martin, Photocatalytic activity of nanostructured titanium dioxide thin films. Int. J. Photoenergy 25, 161–165 (2012). Google Scholar
  16. 16.
    R. Sharma, P.P. Das, M. Misra, V. Mahajan, J.P. Bock, S. Trigwell, A.S. Biris, M.K. Mazumder, Enhancement of the photoelectrochemical conversion efficiency of nanotubular TiO2 photoanodes using nitrogen plasma assisted surface modification. Nanotechnology 20(7), 075704 (2009). CrossRefGoogle Scholar
  17. 17.
    X. Liu, Z. Liu, J. Zheng, X. Yan, D. Li, S. Chen, W. Chu, Characteristics of N-doped TiO2 nanotube arrays by N2-plasma for visible light-driven photocatalysis. J. Alloys Compd. 509, 9970–9976 (2011). CrossRefGoogle Scholar
  18. 18.
    C.M. Huang, L.C. Chen, K.W. Cheng, G.T. Pan, Effect of nitrogen-plasma surface treatment to the enhancement of TiO2 photocatalytic activity under visible light irradiation. J. Mol. Catal. A: Chem. 261, 218–224 (2007). CrossRefGoogle Scholar
  19. 19.
    C. Chen, H. Bai, C. Chang, Effect of plasma processing gas composition on the nitrogen-doping status and visible light photocatalysis of TiO2. J. Phys. Chem. C 111, 15228–15235 (2007). CrossRefGoogle Scholar
  20. 20.
    F. Napoli, M. Chiesa, S. Livraghi, E. Giamello, S. Agnoli, G. Granozzi, G. Pacchioni, C. Di Valentin, The nitrogen photoactive centre in N-doped titanium dioxide formed via interaction of N atoms with the solid. Nature and energy level of the species. Chem. Phys. Lett. 477, 135–138 (2009). CrossRefGoogle Scholar
  21. 21.
    L. Jinlong, M. Xinxin, S. Mingren, X. Li, S. Zhenlun, Fabrication of nitrogen-doped mesoporous TiO2 layer with higher visible photocatalytic activity by plasma-based ion implantation. Thin Solid Films 519, 101–105 (2010). CrossRefGoogle Scholar
  22. 22.
    L. Miao, S. Tanemura, H. Watanabe, S. Toh, K. Kaneko, Structural and compositional characterization of N2-H2 plasma surface-treated TiO2 thin films. Appl. Surf. Sci. 244, 412–417 (2005). CrossRefGoogle Scholar
  23. 23.
    D.A. Zatsepin, D.W. Boukhvalov, E.Z. Kurmaev, I.S. Zhidkov, N.V. Gavrilov, M.A. Korotin, S.S. Kim, Structural defects and electronic structure of N-ion implanted TiO2: bulk versus thin film. Appl. Surf. Sci. 355, 984–988 (2015). CrossRefGoogle Scholar
  24. 24.
    W.-Q. Li, G.-X. Cai, Y.-Q. Wang, Y.-C. Liu, S.-J. Yan, F. Ren, W. Wu, Z.-G. Dai, X.-D. Zhou, C.-Z. Jiang, C. Zhang, X.-H. Xiao, H.-W. Ni, Fabrication and properties of TiO2 nanofilms on different substrates by a novel and universal method of Ti-ion implantation and subsequent annealing. Nanotechnology 24, 255603 (2013). CrossRefGoogle Scholar
  25. 25.
    R. Bekkari, B. Jaber, H. Labrim, M. Ouafi, N. Zayyoun, L. Laânab, Effect of solvents and stabilizer molar ratio on the growth orientation of sol-gel-derived ZnO Thin films. Int. J. Photoenergy 2019, 1–7 (2019). CrossRefGoogle Scholar
  26. 26.
    V. Prusakova, C. Collini, M. Nardi, R. Tatti, L. Lunelli, L. Vanzetti, L. Lorenzelli, G. Baldi, A. Chiappini, A. Chiasera, D. Ristic, R. Verucchi, M. Bortolotti, S. Dirè, The development of sol-gel derived TiO2 thin films and corresponding memristor architectures. RSC Adv. 7, 1654–1663 (2017). CrossRefGoogle Scholar
  27. 27.
    E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, Influence of triblock copolymer (pluronic F127) on enhancing the physico-chemical properties and photocatalytic response of mesoporous TiO2. Appl. Surf. Sci. 355, 959–968 (2015). CrossRefGoogle Scholar
  28. 28.
    D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation. J. Mater. Sci. 46, 855–874 (2011). CrossRefGoogle Scholar
  29. 29.
    S. Roy, N. Tripathy, D. Pradhan, P.K. Sahu, J.P. Kar, Electrical characteristics of dip coated TiO2 thin films with various withdrawal speeds for resistive switching applications. Appl. Surf. Sci. 449, 181–185 (2018). CrossRefGoogle Scholar
  30. 30.
    R. Parra, M.S. Góes, M.S. Castro, E. Longos, P.R. Bueno, J.A. Varela, Reaction pathway to the synthesis of anatase via the chemical modification of titanium isopropoxide with acetic acid. Chem. Mater. 20, 143–150 (2008). CrossRefGoogle Scholar
  31. 31.
    C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 712 (1992). CrossRefGoogle Scholar
  32. 32.
    J.N. Wilson, H. Idriss, Reactions of ammonia on stoichiometric and reduced TiO2 (001) single crystal surfaces. Langmuir 20, 10956–10961 (2004). CrossRefGoogle Scholar
  33. 33.
    J. Chen, Z. Hua, Y. Yan, A.A. Zakhidov, R.H. Baughman, L. Xu, Template synthesis of ordered arrays of mesoporous titania spheres. Chem. Commun. 46, 1872 (2010). CrossRefGoogle Scholar
  34. 34.
    E.M. Samsudin, S.B. AbdHamid, J.C. Juan, W.J. Basirun, A.E. Kandjani, S.K. Bhargava, Controlled nitrogen insertion in titanium dioxide for optimal photocatalytic degradation of atrazine. RSC Adv. 5, 44041–44052 (2015). CrossRefGoogle Scholar
  35. 35.
    S. Mugundan, B. Rajamannan, G. Viruthagiri, N. Shanmugam, R. Gobi, P. Praveen, Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol–gel technique. Appl. Nanosci. 5, 449–456 (2015). CrossRefGoogle Scholar
  36. 36.
    M. Crişan, D. Mardare, A. Ianculescu, N. Drăgan, I. Niţoi, D. Crişan, M. Voicescu, L. Todan, P. Oancea, C. Adomniţei, M. Dobromir, M. Gabrovska, B. Vasile, Iron doped TiO2 films and their photoactivity in nitrobenzene removal from water. Appl. Surf. Sci. 455, 201–215 (2018). CrossRefGoogle Scholar
  37. 37.
    S. Na-Phattalung, M.F. Smith, K. Kim, M.-H. Du, S.-H. Wei, S.B. Zhang, S. Limpijumnong, First-principles study of native defects in anatase TiO2. Phys. Rev. B. 73, 125205 (2006). CrossRefGoogle Scholar
  38. 38.
    P. Knauth, H.L. Tuller, Electrical and defect thermodynamic properties of nanocrystalline titanium dioxide. J. Appl. Phys. 85, 897–902 (1999). CrossRefGoogle Scholar
  39. 39.
    E.H. Nicollian, J.R. Brews, MOS (metal oxide semiconductor) physics and technology. IEE Proc I Solid State Electron Dev 1, 1 (2003). Google Scholar
  40. 40.
    K. McDonald, R.K. Chanana, C.C. Tin, M. Di Ventra, S.T. Pantelides, G. Chung, J.R. Williams, R.A. Weller, L.C. Feldman, Effects of anneals in ammonia on the interface trap density near the band edges in 4H–silicon carbide metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 77, 3601–3603 (2002). Google Scholar
  41. 41.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010). CrossRefGoogle Scholar
  42. 42.
    H. Schroeder, D.S. Jeong, Resistive switching in a Pt/TiO2/Pt thin film stack—a candidate for a non-volatile ReRAM. Microelectron. Eng. 84, 1982–1985 (2007). CrossRefGoogle Scholar
  43. 43.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008). CrossRefGoogle Scholar
  44. 44.
    K. Szot, C. Rohde, B. Reichenberg, R. Waser, S.K. Kim, C.S. Hwang, S. Choi, B.J. Choi, H.J. Kim, J.H. Oh, D.S. Jeong, S. Tiedke, Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J. Appl. Phys. 98, 033715 (2005). CrossRefGoogle Scholar
  45. 45.
    M. Gharagozlou, R. Bayati, Photocatalytic activity and formation of oxygen vacancies in cation doped anatase TiO2 nanoparticles. Ceram. Int. 40, 10247–10253 (2014). CrossRefGoogle Scholar
  46. 46.
    M. Fujimoto, H. Koyama, M. Konagai, Y. Hosoi, K. Ishihara, S. Ohnishi, N. Awaya, TiO2 anatase nanolayer on TiN thin film exhibiting high-speed bipolar resistive switching. Appl. Phys. Lett. 89, 17–20 (2006). Google Scholar
  47. 47.
    Y.H. Do, J.S. Kwak, Y.C. Bae, K. Jung, H. Im, J.P. Hong, Hysteretic bipolar resistive switching characteristics in TiO2/TiO2-x multilayer homojunctions. Appl. Phys. Lett. 95, 093507 (2009). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Institute of TechnologyRourkelaIndia
  2. 2.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia

Personalised recommendations