Skip to main content
Log in

Investigation of the nanocomposite material YBa2Cu3O7−δ + ZrO2 as a resistive superconducting fault-current limiter

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of nanoscale inclusions ZrO2 as the second component of the composites on the magnetic and transport properties of superconducting polycrystals YBa2Cu3O7−δ are studied. Samples of YBa2Cu3O7−δ with different (0.5, 4, 8 и 12 wt%) contents of ZrO2 nanoparticles were synthesized. Measurements of the magnetization in the field range up to 5 T and recalculation using the Bean model showed that JC in the case of composite samples is larger than the initial one in the entire range of the magnetic field. The results of experimental studies of switching superconducting fault-current limiter in AC voltage networks based on high-temperature superconductors (HTSC) of the second generation are given. The stand contains a series-connected HTSC module and a high-speed current switch with a shutdown time of 9 ms. The high efficiency of samples from the nanocomposite material YBa2Cu3O7−δ + ZrO2 as a resistive superconducting fault-current limiter was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Noe, M. Steurer, High-temperature superconductor fault current limiters: concepts, applications, and development status. Supercond. Sci. Technol. 20, R15–R29 (2007). https://doi.org/10.1088/0953-2048/20/3/R01

    Article  Google Scholar 

  2. W. Paul, M. Chen, M. Lakner, J. Rhyner, D. Braun, W. Lanz, Fault current limiter based on high temperature superconductors—different concepts, test results, simulations, applications. Physica C 354(1–4), 27–33 (2001). https://doi.org/10.1016/s0921-4534(01)00018-1

    Article  Google Scholar 

  3. M. Joo, Reduction of fault current peak in an inductive high-T c superconducting fault current limiter. Cryogenics 45(5), 343–347 (2005). https://doi.org/10.1016/j.cryogenics.2004.11.007

    Article  Google Scholar 

  4. W. Paul, M. Chen, M. Lakner, J. Rhyner, L. Widenhorn, A. Guérig, Test of 1.2 MVA high-T c superconducting fault current limiter. Supercond. Sci. Technol. 10(12), 914–918 (1997). https://doi.org/10.1007/978-4-431-66879-4_292

    Article  Google Scholar 

  5. J. Bock, F. Breuer, H. Walter, S. Elschner, M. Kleimaier, R. Kreutz, M. Noe, CURL 10: development and field-test of a 10 kV/10 MVA resistive current limiter based on bulk MCP-BSCCO 2212. IEEE Trans. Appl. Supercond. 15(2), 1955–1960 (2005). https://doi.org/10.1109/tasc.2005.849344

    Article  Google Scholar 

  6. S. Elschner, F. Breuer, M. Noe, T. Rettelbach, H. Walter, J. Bock, Manufacturing and testing of MCP 2212 bifilar coils for a 10 MVA fault current limiter. IEEE Trans. Appl. Supercond. 13(2), 1980–1983 (2003). https://doi.org/10.1109/tasc.2003.812954

    Article  Google Scholar 

  7. A.A. Lepeshev, G.S. Patrin, GYu. Yurkin, A.D. Vasiliev, I.V. Nemtsev, D.M. Gokhfeld, A.D. Balaev, V.G. Demin, E.P. Bachurina, I.V. Karpov, A.V. Ushakov, LYu. Fedorov, L.A. Irtyugo, M.I. Petrov, Magnetic properties and critical current of superconducting nanocomposites (1-x)YBa2Cu3O7-δ + xCuO. J. Supercond. Novel Magn. 30(12), 3351–3354 (2018). https://doi.org/10.1007/s10948-018-4676-x

    Google Scholar 

  8. A.A. Lepeshev, A.V. Ushakov, I.V. Karpov, D.A. Balaev, A.A. Krasikov, A.A. Dubrovskiy, D.A. Velikanov, M.I. Petrov, Particularities of the magnetic state of CuO nanoparticles produced by low-pressure plasma arc discharge. J. Supercond. Novel Magn. 30(4), 931–936 (2017). https://doi.org/10.1007/s10948-016-3885-4

    Article  Google Scholar 

  9. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, Plasma-chemical synthesis of copper oxide nanoparticles in a low-pressure arc discharge. Vacuum 133, 25–30 (2016). https://doi.org/10.1016/j.vacuum.2016.08.007

    Article  Google Scholar 

  10. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, Peculiarities of magnetic behavior of CuO nanoparticles produced by plasma-arc synthesis in a wide temperature range. J. Supercond. Novel Magn. 30(12), 3351–3354 (2017). https://doi.org/10.1007/s10948-017-4311-2

    Article  Google Scholar 

  11. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, LYu. Fedorov, Specific features of the behavior of electroarc CuO nanoparticles in a magnetic field. Phys. Solid State 57(5), 919–923 (2015). https://doi.org/10.1134/S1063783415050303

    Article  Google Scholar 

  12. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, LYu. Fedorov, Copper oxide of plasma-chemical synthesis for doping superconducting materials. Int. J. Nanosci. 16(4), 1750001 (2017). https://doi.org/10.1142/S0219581X17500016

    Article  Google Scholar 

  13. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petrov, Enhancing of magnetic flux pinning in YBa2Cu3O7−x/CuO granular composites. J. Appl. Phys. 118(2), 023907 (2015). https://doi.org/10.1063/1.4926549

    Article  Google Scholar 

  14. K. De Keukeleere, P. Cayado, A. Meledin, F. Vallès, J. De Roo, H. Rijckaert, G. Pollefeyt, E. Bruneel, A. Palau, M. Coll, S. Ricart, G. Van Tendeloo, T. Puig, X. Obradors, I. Van Driessche, Superconducting YBa2Cu3O7–δ nanocomposites using preformed ZrO2 nanocrystals: growth mechanisms and vortex pinning properties. Adv. Electron. Mater. 2, 1600161 (2016). https://doi.org/10.1002/aelm.201600161

    Article  Google Scholar 

  15. A.V. Ushakov, I.V. Karpov, A.A. Lepeshev, M.I. Petorv, LYu. Fedorov, Study of magnetic flux pinning in granular YBa2Cu3O7–y/nanoZrO2 composites. JETP Lett. 99, 99 (2014). https://doi.org/10.1134/S002136401402009X

    Article  Google Scholar 

  16. I.V. Karpov, A.V. Ushakov, A.A. Lepeshev, LYu. Fedorov, E.A. Dorozhkina, O.N. Karpova, A.A. Shaikhadinov, V.G. Demin, Device for increasing the magnetic flux pinning in granular nanocomposites based on the high-temperature superconducting ceramic. Tech. Phys. 63(2), 230–234 (2018). https://doi.org/10.1134/S1063784218020196

    Article  Google Scholar 

  17. D.M. Gokhfeld, D.A. Balaev, M.I. Petrov, S.I. Popkov, K.A. Shaykhutdinov, V.V. Valkov, Magnetization asymmetry of type-II superconductors in high magnetic fields. J. Appl. Phys. 109, 033904 (2011). https://doi.org/10.1063/1.3544038

    Article  Google Scholar 

  18. T.S. Orlova, J.Y. Laval, C. Nguyen-van-Huong, A. Dubon, Effect of ZrO2 doping on structure and superconducting properties of sintered DyBaCuO ceramics. Supercond. Sci. Technol. 14(2), 59 (2001). https://doi.org/10.1088/0953-2048/14/2/301

    Article  Google Scholar 

  19. O. Gorur, G. Yildirim, S.P. Altintas, C. Terzioglu, Role of Gd content in Cu(1) and Cu(2) sites on electrical, microstructural, physical, mechanical and superconducting properties of YBa2Cu3−xGdxO7−δ ceramics. J. Mater. Sci.: Mater. Electron. 24(6), 1842 (2013). https://doi.org/10.1007/s10854-012-1022-0

    Google Scholar 

  20. I.A. Rudnev, D.S. Odintsov, V.A. Kashurnikov, Critical current suppression in high-T c superconductors and its dependence on the defects concentration. Phys. Lett. A 372(21), 3934 (2008). https://doi.org/10.1016/j.physleta.2008.02.065

    Article  Google Scholar 

  21. J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, D.E. Peterson, Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7-x + BaZrO3. Nat. Mater. 3(7), 439 (2004). https://doi.org/10.1038/nmat1156

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed with a support of the grant of the Russian Science Foundation (Project No. 16-19-10054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Yu. Fedorov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ushakov, A.V., Karpov, I.V., Demin, V.G. et al. Investigation of the nanocomposite material YBa2Cu3O7−δ + ZrO2 as a resistive superconducting fault-current limiter. J Mater Sci: Mater Electron 30, 15592–15598 (2019). https://doi.org/10.1007/s10854-019-01937-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01937-2

Navigation