Advertisement

Void fraction of a Sn–Ag–Cu solder joint underneath a chip resistor and its effect on joint strength and thermomechanical reliability

  • Wonil Seo
  • Yong-Ho Ko
  • Young-Ho KimEmail author
  • Sehoon Yoo
Article
  • 13 Downloads

Abstract

The void fraction in the solder joint of a chip resistor and its effect on the solder joint strength and reliability were investigated. The solder joint of a chip resistor has two regions: solder beneath the component and solder fillet. Although the total void fraction was similar irrespective of the component size, the void fraction of solder beneath the component increased and that of solder fillet decreased as the component size increased. The void fraction decreased considerably under vacuum reflow compared with that under air reflow. Furthermore, the vacuum reflowed samples showed similar void fraction characteristics as the air reflowed samples: the void fraction in the solder beneath the chip resistor increased and that in the solder fillet decreased as the chip resistor size increased. For both air and vacuum reflow, the shear strength of the chip resistor solder joint decreased as the chip size increased. The reliability of the chip resistor joint was evaluated using a thermal shock test. As the number of thermal shock cycles increased, the shear strength of the chip resistor solder joint decreased. Up to 2000 cycles, the shear strength reduction rates were similar irrespective of the component size. However, after 3000 cycles, the shear strength reduction rate of the large components (0805, 1210) was to about 50%, which was twice that of the small components (0402, 0603). Cross-sectional SEM after the thermal shock test revealed that a generated crack merged with a void, forming a long crack and lowering the joint reliability.

Notes

Acknowledgements

This work was financially supported through a grant from Korea Institute of Industrial Technology, Republic of Korea.

References

  1. 1.
    L.J. Ladani, A. Dasgupta, J. Electron. Packag. 129(3), 273–277 (2007)CrossRefGoogle Scholar
  2. 2.
    A. DerMarderosian, V. Gionet, Reliability Physics Symposium, 21st Annual, IEEE, pp. 235–241 (1983)Google Scholar
  3. 3.
    N. Lee, W. O’Hara, in Proc. Surf. Mount Int. pp. 462–471 (1995)Google Scholar
  4. 4.
    R.K. Wassink, Solder in Electronics (Electrochemical Publications, New York, 1989)Google Scholar
  5. 5.
    M. Yunus, K. Srihari, J. Pitarresi, A. Primavera, Microelectron. Reliab. 43(12), 2077–2086 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Sethuraman, R. Coyle, R. Popowich, P. Read, in SMTAI Conf. Proc. (2007)Google Scholar
  7. 7.
    R. Coyle, H. McCormick, P. Read, R. Popowich, J. Osenbach, in SMTAI Conf. Proc. p. 14 (2010)Google Scholar
  8. 8.
    Q. Yu, T. Shibutani, D.-S. Kim, Y. Kobayashi, J. Yang, M. Shiratori, Microelectron. Reliab. 48(3), 431–437 (2008)CrossRefGoogle Scholar
  9. 9.
    T.-C. Chiu, K. Zeng, R. Stierman, D. Edwards, K. Ano, in Electronic Components and Technology Conference, 2004, Proc. 54th, IEEE, pp. 1256–1262 (2004)Google Scholar
  10. 10.
    IPC-610D standard, Acceptability of Electronic Assemblies, Association Connecting Electroncs Industries (2014). http://www.ipc.org/
  11. 11.
    D. Hillman, D. Adams, T. Pearson, B. Williams, B. Petrick, R. Wilcoxon, R. Collins, D. Bernard, J. Travis, E. Krastev, Proc. SMTAI 2011, 163–177 (2011)Google Scholar
  12. 12.
    P. Wild, D. Lorenz, T. Grözinger, A. Zimmermann, Microelectron. Reliab. 85, 163–175 (2018)CrossRefGoogle Scholar
  13. 13.
    M.-S. Kang, Y.-J. Jeon, D.-S. Kim, Y.-E. Shin, Int. J. Precis. Eng. Manuf. 17(4), 445–452 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.-J. Jeon, S.-I. Son, D.-S. Kim, Y.-E. Shin, J. Korean Inst. Electr. Electron. Mater. Eng. 23(8), 611–616 (2010)Google Scholar
  15. 15.
    A. Youssef, I. Birner, H. Voelkel, J. Thierauf, R. Vodiunig, A. Middendorf, K.-D. Lang, in Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2016 17th International Conference on, IEEE, pp. 1–6 (2016)Google Scholar
  16. 16.
    P. Tu, Y.C. Chan, J. Lai, IEEE Trans. Compon. Packag. Manuf. Technol. Part B 20(1), 87–93 (1997)CrossRefGoogle Scholar
  17. 17.
    D.R. Banks, T.E. Burnette, Y. Cho, W.T. DeMarco, A.J. Mawer, in Proc. Surface Mount International, Surface Mount International San Jose, California, pp. 121–126 (1996)Google Scholar
  18. 18.
    D. Kim, K. Hubbard, B. Nandagopal, M. Hu, S. Teng, A. Nouri, in IPC APEX Conf. Proc., pp. S31–03 (2006)Google Scholar
  19. 19.
    J. Smetana, T. Sack, D. Love, C. Katzko, in IPC APEX Conf. Proc., pp. S28–02 (2011)Google Scholar
  20. 20.
    Y. Liu, J. Keck, E. Page, N.-C. Lee, in IPC APEX EXPO Conf. Proc., p. 19 (2014)Google Scholar
  21. 21.
    M. Rauer, A. Volkert, T. Scherck, S. Harter, M. Kaloudis, J. Fail, Anal. Prev. 14, 272–281 (2014)CrossRefGoogle Scholar
  22. 22.
    P. Wild, T. Grozinger, D. Lorenz, A. Zimmermann, IEEE Trans. Reliab. 66(4), 1229–1237 (2017)CrossRefGoogle Scholar
  23. 23.
    JIS Z 3198-7 Standard, Test Methods for Lead-Free Solders-Part 7: Methods for Shear Strength of Solder Joints on Chip Components, Japanese Standards Association (2009). https://www.jsa.or.jp/en/
  24. 24.
    K. Sweatman, T. Nishimura, K. Sugimoto, A. Kita, Controlling Voiding Mechanisms in the Reflow Soldering Process, in Proc. IPC APEX Expo (2016)Google Scholar
  25. 25.
    Z. Wang, H. Zhao, W. Lou, H. Li, L. Jin, in IEEE 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), pp. 1–4 (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Joining R&D GroupKorea Institute of Industrial TechnologyIncheonKorea
  2. 2.Division of Materials Science and EngineeringHanyang UniversitySeoulKorea

Personalised recommendations