Advertisement

Investigation on nucleation kinetics, growth, optical, mechanical, conductivity and Z-scan studies on thiosemicarbazide cadmium chloride monohydrate (TSCCCM) single crystals for nonlinear applications

  • M. AkilanEmail author
  • R. Ragu
  • J. P. Angelena
  • S. Jerome Das
Article
  • 51 Downloads

Abstract

Single crystals of thiosemicarbazide cadmium chloride monohydrate (TSCCCM) are grown by slow evaporation solution growth technique (SEST) by utilizing double distilled water as a solvent. Single crystal X-ray diffraction (SXRD) analysis reveals the cell parameters and space group of the grown crystal. FT-IR and FT-Raman spectra were used to assert the presence of various functional groups present in the host material. UV study exhibits high transparency range of TSCCCM crystal and the corresponding optical bandgap is found to be 4.19 eV. The grown crystal exhibits negative photoconductivity. The mechanical strength of the grown crystal was investigated using Vickers microhardness test. The melting point of the grown crystal is determined using thermal analysis. Dielectric studies have been carried out as function of frequency at diverse temperatures. Chemical etching studies were carried out on the grown crystal by using water as an etchant. Second harmonic generation (SHG) efficiency was found to be 13 times higher than that of KDP. The real, imaginary and third order nonlinear susceptibility of the grown crystal is determined using Z-scan analysis.

Notes

Acknowledgements

The work was supported by Loyola College—Times of India (LC-TOI), Major Research project (3LCTOI14PHY002). Authors are grateful to Dr. D. Sastikumar, Professor and Mr. Devenderan, Research Scholar, Department of Physics, NIT Trichy for Z scan measurements. Furthermore, the authors would like to acknowledge Prof. P.K. Das, Department of Inorganic and Physical chemistry, Indian Institute of Science, Bangalore for providing SHG measurement. The authors are thankful to XRD—SAIF (IITM), Centennial Physics Instrumentation Centre—Loyola College Chennai, CIF-Pondicherry University and STIC Cochin for characterization studies.

References

  1. 1.
    R.J. Collins, D.F. Nelson, A.L. Schawlow, W. Bond, C.G.B. Garrett, W. Kaiser, Coherence, narrowing, directionality, and relaxation oscillations in the light emission from ruby. Phys. Rev. Lett. 5(7), 303 (1960)CrossRefGoogle Scholar
  2. 2.
    C. Du, B. Teng, Z. Wang, J. Liu, X. Xu, G. Xu, K. Fu, J. Wang, Y. Liu, Z. Shao, Actively Q-switched intracavity second-harmonic generation of 1.06 μm in BiB3O6 crystal. Opt. Laser Technol. 34(4), 343–346 (2002)CrossRefGoogle Scholar
  3. 3.
    N. Bloembergen, Nonlinear optics of polymers: fundamentals and applications. J. Nonlinear Opt. Phys. Mater. 5(1), 1–8 (1996)CrossRefGoogle Scholar
  4. 4.
    P. Günter, Nonlinear Optical Effects and Materials, vol. 72 (Springer, Berlin, 2012)Google Scholar
  5. 5.
    D.S. Chemla, J. Zyss, Nonlinear optical properties of organic molecules and crystals. Actapolymerica 39(12), 726–727 (1987)Google Scholar
  6. 6.
    B. Boaz, J.Mary Milton, Babu Varghese Linet, M. Palanichamy, S. Jerome Das, Growth and characterization of a new nonlinear optical material: potassium p-nitrophenolatedihydrate (NO2–C6H4–OK·2H2O) with new bonding properties. J. Cryst. Growth 280(3–4), 448–454 (2005)CrossRefGoogle Scholar
  7. 7.
    R. Sankar, C.M. Ragahvan, R. Mohan Kumar, R. Jayavel, Growth and characterization of bis-glycine sodium nitrate (BGSN), a novel semi-organic nonlinear optical crystal. J. Cryst. Growth 309(1), 30–36 (2007)CrossRefGoogle Scholar
  8. 8.
    Min-hua Jiang, Qi Fang, Organic and semiorganic nonlinear optical materials. Adv. Mater. 11(13), 1147–1151 (1999)CrossRefGoogle Scholar
  9. 9.
    Nicholas J. Long, Organometallic compounds for nonlinear optics—the search for en-light-enment! Angew. Chem. Int. Ed. Engl. 34(1), 21–38 (1995)CrossRefGoogle Scholar
  10. 10.
    J. Arul Raj, P. Glorium, S.Perumal Selvarajan, N. Murali Krishnan, Investigations on growth and characterization of undoped and thiourea-doped γ-glycine crystals for NLO applications. Mater. Manuf. Process. 26(10), 1254–1260 (2011)CrossRefGoogle Scholar
  11. 11.
    D. Shanthi, P. Selvarajan, K.K. HemaDurga, S. Lincy Mary Ponmani, Nucleation kinetics, growth and studies of β-alanine single crystals. Spectrochim. Acta A 110, 1–6 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Dinakaran, J. Mary Linet, C. Justin Raj, S.M. Navis Priya, S. Jerome Das, Investigations on the nucleation studies of sodium paranitrophenolate dihydrate single crystal. Mater. Res. Bull. 43(8–9), 2010–2017 (2008)CrossRefGoogle Scholar
  13. 13.
    D. Jayaraman, C. Subramanian, R. Dhanasekaran, P. Ramasamy, Kinetic process of homogeneous nucleation incorporating the effect of curvature. J. Cryst. Growth 79(1–3), 997–1000 (1986)CrossRefGoogle Scholar
  14. 14.
    Ya B. Zeldovich, On the theory of new phase formation: cavitation. Acta Physicochem. USSR 18, 1 (1943)Google Scholar
  15. 15.
    Y.I. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955)Google Scholar
  16. 16.
    D. Turnbull, J. Co Fisher, Rate of nucleation in condensed systems. J. Chem. Phys. 17(1), 71–73 (1949)CrossRefGoogle Scholar
  17. 17.
    A.E. Nielsen, O. Söhnel, Interfacial tensions electrolyte crystal-aqueous solution, from nucleation data. J. Cryst. Growth 11(3), 233–242 (1971)CrossRefGoogle Scholar
  18. 18.
    R. Sankar, C.M. Raghavan, R. Mohan Kumar, R. Jayavel, Growth and characterization of a new semiorganic non-linear optical thiosemicarbazide cadmium chloride monohydrate (Cd(NH2NHCSNH2)Cl2·H2O) single crystals. J. Cryst. Growth 305(1), 156–161 (2007)CrossRefGoogle Scholar
  19. 19.
    R. Muralidharan, R. Mohankumar, R. Jayavel, P. Ramasamy, Growth and characterization of l-arginine acetate single crystals: a new NLO material. J. Cryst. Growth 259(3), 321–325 (2003)CrossRefGoogle Scholar
  20. 20.
    P. Maadeswaran, S. Thirumalairajan, J. Chandrasekaran, Growth, thermal, optical and birefringence studies of semiorganic nonlinear optical thiosemicarbazide cadmium chloride monohydrate (TCCM) single crystals. Optik 121(9), 773–777 (2010)CrossRefGoogle Scholar
  21. 21.
    R.K. Tukhtaev, A.I. Gavrilov, Z.A. Saveljeva, S.V. Larionov, V.V. Boldyrev, The effect of nitrogen pressure on the synthesis of CdS from [Cd(NH2C(S)NHNH2)2](NO3)2 complex compound using combustion method. J. Mater. Synth. Process. 7(1), 19–22 (1999)CrossRefGoogle Scholar
  22. 22.
    Y. Le Fur, R. Masse, M.Z. Cherkaoui, J.F. Nicuod, Crystal structure of ethyl-2, 6-dimethyl-4 (1H)-pyridinone, trihydrate: a potential nonlinear optical crystalline organic material transparent till the near ultraviolet range. Z. Kristallogr. 210(856), 860 (1995)Google Scholar
  23. 23.
    C.N.R. Rao, Ultraviolet and Visible Spectroscopy of Organic Compound (Prentice Hall of India Pvt Ltd., New Delhi, 1984)Google Scholar
  24. 24.
    J. Tauc (ed.), Amorphous and Liquid Semiconductors (Springer, New York, 2012)Google Scholar
  25. 25.
    R.E. Denton, R.D. Campbell, S.G. Tomlin, The determination of the optical constants of thin films from measurements of reflectance and transmittance at normal incidence. J. Phys. 5(4), 852 (1972)Google Scholar
  26. 26.
    Jyoti Dalal, Nidhi Sinha, Binay Kumar, Structural, optical and dielectric studies of novel non-linear bisglycine lithium nitrate piezoelectric single crystal. Opt. Mater. 37, 457–463 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Krishnan, C. Justin Raj, S.M. Navis Priya, R. Robert, S. Dinakaran, S. Jerome Das, Optical and dielectric studies on succinic acid single crystals. Cryst. Res. Technol.: J. Exp. Ind. Cryst. 43(8), 845–850 (2008)CrossRefGoogle Scholar
  28. 28.
    V.N. Joshi, Photoconductivity (Marcel Dekker, New York, 1990)Google Scholar
  29. 29.
    R. Ragu, M. Akilan, J.P. Angelena, P.S. Latha Mageshwari, S. Jerome Das, Growth, optical, mechanical, thermo-physical, laser damage threshold (LDT) and Z-scan studies on dilithium succinate single crystal for optical limiting applications. J. Mater. Sci.: Mater. Electron. 30(6), 6287–6299 (2019)Google Scholar
  30. 30.
    B. Lal, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Microhardness, fracture mechanism and dielectric behavior of flux grown GdFeO3 single crystals. Mater. Chem. Phys. 85, 353–365 (2004)CrossRefGoogle Scholar
  31. 31.
    K. Sangwal, On the reverse indentation size effect and microhardness measurements of solids. Mater. Chem. Phys. 63, 145–152 (2000)CrossRefGoogle Scholar
  32. 32.
    Mihir J. Joshi, B.S. Shah, On the microhardness of some organic molecular solids. Cryst. Res. Technol. 19(8), 1107–1111 (1984)CrossRefGoogle Scholar
  33. 33.
    E.M. Onitsch, Über die mikrohärte der metalle. Mikroskopie 2, 131–135 (1947)Google Scholar
  34. 34.
    J.H. Joshi, S. Kalainathan, D.K. Kanchan, M.J. Joshi, K.D. Parikh, Effect of l-threonine on growth and properties of ammonium dihydrogen phosphate crystal. Arab. J. Chem. (2017).  https://doi.org/10.1016/j.arabjc.2017.12.005 CrossRefGoogle Scholar
  35. 35.
    J.H. Joshi, K.P. Dixit, K.D. Parikh, H.O. Jethva, D.K. Kanchan, S. Kalainathan, M.J. Joshi, Effect of Sr2+ on growth and properties of ammonium dihydrogen phosphate single crystal. J. Mater. Sci.: Mater. Electron. 29(7), 5837–5852 (2018)Google Scholar
  36. 36.
    J.H. Joshi, G.M. Joshi, M.J. Joshi, H.O. Jethva, K.D. Parikh, Raman, photoluminescence, and ac electrical studies of pure and l-serine doped ammonium dihydrogen phosphate single crystals: an understanding of defect chemistry in hydrogen bonding. New J. Chem. 42(21), 17227–17249 (2018)CrossRefGoogle Scholar
  37. 37.
    Min-Min Zhao, Jia-Zhen Ge, Qu Zhi-Rong, Synthesis, structure and dielectric constant property of two novel complexes based on protonated 1-aminoadamantane. Inorg. Chem. Commun. 13(10), 1152–1155 (2010)CrossRefGoogle Scholar
  38. 38.
    T. Arumanayagam, P. Murugakoothan, Optical conductivity and dielectric response of an organic aminopyridine NLO single crystal. J. Miner. Mater. Charact. Eng. 10(13), 1225 (2011)Google Scholar
  39. 39.
    H. Maluszýnska, P. Czarnecki, Structure, phase transitions and dielectric properties of a new inclusion compound of bis-thiourea pyridinium nitrate salt. Zeitschrift für Krist-Cryst Mater 221(3), 218–225 (2006)Google Scholar
  40. 40.
    P.R. Deepthi, J. Shanthi, Optical, dielectric & ferroelectric studies on amino acids doped TGS single crystals. RSC Adv. 6(40), 33686–33694 (2016)CrossRefGoogle Scholar
  41. 41.
    F. Yakuphanoglu, Y. Aydogdu, U. Schatzschneider, E. Rentschler, DC and AC conductivity and dielectric properties of the metal-radical compound: aqua [bis (2-dimethylaminomethyl-4-NIT-phenolato)]copper(II). Solid State Commun. 128(2–3), 63–67 (2003)CrossRefGoogle Scholar
  42. 42.
    N.M. Ravindra, V.K. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. Infrared Phys. 20(1), 67–69 (1980)CrossRefGoogle Scholar
  43. 43.
    David R. Penn, Wave-number-dependent dielectric function of semiconductors. Phys. Rev. 128(5), 2093 (1962)CrossRefGoogle Scholar
  44. 44.
    Pierre Van Rysselberghe, Remarks concerning the Clausius-Mossotti law. J. Phys. Chem. 36(4), 1152–1155 (1932)CrossRefGoogle Scholar
  45. 45.
    Vaishnav, R. M., L. K. Maniar, M. J. Joshi, and R. M. Dabhi. Study of kinetic and thermodynamic parameters for the dislocation etch-pits on anthracene single crystal cleavages. In Indian Journal of Physics and Proceedings of The Indian Association For The Cultivation of Science A, vol. 74, no. 6, pp. 581-584Google Scholar
  46. 46.
    M. Saravanan, A. Senthil, S. Abraham Rajasekar, Investigations on the low temperature solution growth, etching, laser damage threshold, photoluminescence, electrical characterization and nonlinear optical properties of organic material: ammonium hydrogen l-malate. Optik 127(4), 1685–1689 (2016)CrossRefGoogle Scholar
  47. 47.
    K. Pichan, S.P. Muthu, R. Perumalsamy, “Crystal growth and characterization of third order nonlinear optical piperazinium bis (4-hydroxybenzenesulphonate) (P4HBS) single crystal. J. Cryst. Growth 473, 39–54 (2017)CrossRefGoogle Scholar
  48. 48.
    R. Ragu, P.S. Latha Mageshwari, M. Akilan, J.P. Angelena, S. Jerome Das, Enrich mechanical, photo-acoustic, SHG and Z-scan studies on pure and crystal violet dye (CV) incorporated sodium acid phthalate crystal for optical applications. J. Mater. Sci.: Mater. Electron. 30(2), 1670–1676 (2019)Google Scholar
  49. 49.
    S.P. Ramteke, M.S. Mohd Anis, S. Pandian, M.I. Kalainathan, P.Ramasamy Baig, G.G. Muley, Nonlinear optical and microscopic analysis of Cu2 + doped zinc thiourea chloride (ZTC) monocrystal. Opt. Laser Technol. 99, 197–202 (2018)CrossRefGoogle Scholar
  50. 50.
    A. Silambarasan, E. Nageswara Rao, S. Venugopal Rao, P. Rajesh, P. Ramasamy, Bulk growth, crystalline perfection and optical characteristics of inversely soluble lithium sulfate monohydrate single crystals grown by the conventional solvent evaporation and modified Sankaranarayanan-Ramasamy method. CrystEngComm 18(12), 2072–2080 (2016)CrossRefGoogle Scholar
  51. 51.
    K. Ramachandran, A. Raja, V. Mohankumar, M.S. Pandian, P. Ramasamy, Growth and characterization of 4-methyl-3-nitrobenzoic acid (4M3N) single crystal by using vertical transparent Bridgman-Stockbarger method for NLO applications. Phys. B 562, 82–93 (2019)CrossRefGoogle Scholar
  52. 52.
    V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, B. Dhanalakshmi, Growth and characterization of piperazinium 4-nitrophenolate monohydrate (PNP): a third order nonlinear optical material. Opt. Mater. 35(7), 1327–1334 (2013)CrossRefGoogle Scholar
  53. 53.
    P. Karuppasamy, V. Sivasubramani, M. SenthilPandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystal. RSC Adv. 6, 109105–109123 (2016)CrossRefGoogle Scholar
  54. 54.
    P.L. Mageshwari, R. Priya, S. Krishnan, V. Joseph, S.J. Das, Growth, optical, thermal, mechanical and dielectric studies of sodium succinate hexahydrate (β phase) single crystal: a promising third order NLO material. Opt. Laser Technol. 85, 66–74 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • M. Akilan
    • 1
    Email author
  • R. Ragu
    • 1
  • J. P. Angelena
    • 1
  • S. Jerome Das
    • 1
  1. 1.Department of PhysicsLoyola CollegeChennaiIndia

Personalised recommendations