Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 30, Issue 18, pp 16939–16948 | Cite as

Prediction of the electrical response of solution-processed thin-film transistors using multifactorial analysis

  • João P. Braga
  • Lucas A. Moises
  • Giovani Gozzi
  • Lucas Fugikawa-SantosEmail author
Article
  • 106 Downloads

Abstract

Thin-film transistors (TFTs) with the active layer composed by zinc oxide (ZnO) deposited via spray-pyrolysis present several advantages such as high electrical performance, high optical transmittance in the visible spectrum, low production cost and the ability to cover large areas. Besides the traditional application in electronic/optoelectronic circuits, ZnO TFTs can also be used in sensing devices due to its responsivity to UV-light. In the present work, we performed a bi-level full multifactorial analysis of TFT performance parameters exposed to UV-light. Characterization conditions like UV-light irradiance and time after UV exposure, as well as processing parameters such as annealing temperature were varied simultaneously, allowing the application of analysis of variance (ANOVA) to investigate the effect of these factors on the electrical performance of the devices. Field-effect mobility, threshold voltage, on/off current ratio and the device intrinsic current were among the parameters used as the responses in the factorial analysis. ANOVA was used to determine the ranking of significance of each factor on the different response parameters by the evaluation of the factor effects. Moreover, the results from ANOVA permitted the construction of linear functions used to predict the device responses in the whole range of the experimental conditions, which were confirmed by independent experimental results. The influence of factor interactions and of the linearization of some response parameters was also studied to improve the accuracy of TFT response prediction.

Notes

Acknowledgements

The authors acknowledge the financial support from São Paulo Research Foundation (FAPESP) (Grants # 2013/24461-7 and 2014/50869-6), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and CNPq (Grant # 573762/2008-2). We also acknowledge the technical support from the Nanostructured Soft Materials Laboratory, LNNano-CNPEM, Brazil (XPS-23205 proposal) for XPS measurements and the Nanotechnology National Laboratory for Agriculture (LNNA/EMBRAPA) supported by CNPq/SISNANO/MCTI for XRD measurements.

Supplementary material

10854_2019_1695_MOESM1_ESM.docx (185 kb)
Electronic supplementary material 1 (DOCX 185 kb)

References

  1. 1.
    A. Sou, S. Jung, E. Gili, V. Pecunia, J. Joimel, G. Fichet, H. Sirringhaus, Programmable logic circuits for functional integrated smart plastic systems. Org. Electron. Phys. Mater. Appl. 15(11), 3111–3119 (2014)Google Scholar
  2. 2.
    B.N. Pal, P. Trottman, J. Sun, H.E. Katz, Solution-deposited zinc oxide and zinc oxide/pentacene bilayer transistors: high mobility n-channel, ambipolar, and nonvolatile devices. Adv. Funct. Mater. 18(12), 1832–1839 (2008)CrossRefGoogle Scholar
  3. 3.
    Y.-S. Li, J.-C. He, S.-M. Hsu, C.-C. Lee, D.-Y. Su, F.-Y. Tsai, I.-C. Cheng, Flexible complementary oxide–semiconductor-based circuits employing n-channel ZnO and p-channel SnO thin-film transistors. IEEE Electron Device Lett. 37(1), 46–49 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Liu, G. Liu, H. Zhu, H. Song, B. Shin, E. Fortunato, R. Martins, F. Shan, Water-induced scandium oxide dielectric for low-operating voltage n- and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 25(46), 7180–7188 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Zhang, J. Yang, Y. Li, J. Wilson, X. Ma, Q. Xin, A. Song, High performance complementary circuits based on p-SnO and n-IGZO thin-film transistors. Materials (Basel) 10(3), 1–7 (2017)Google Scholar
  6. 6.
    Min Li, Lei Zhou, Wu Weijing, Jiawei Pang, Jianhua Zou, Junbiao Peng, Xu Miao, Dual gate indium-zinc oxide thin-film transistors based on anodic aluminum oxide gate dielectrics. IEEE Trans. Electron Devices 61(7), 2448–2453 (2014)CrossRefGoogle Scholar
  7. 7.
    M. Nag, F. De Roose, K. Myny, S. Steudel, J. Genoe, G. Groeseneken, P. Heremans, Characteristics improvement of top-gate self-aligned amorphous indium gallium zinc oxide thin-film transistors using a dual-gate control. J. Soc. Inf. Disp. 25(6), 349–355 (2017)CrossRefGoogle Scholar
  8. 8.
    E. Fortunato, P. Barquinha, R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 25(22), 2945–2986 (2012)CrossRefGoogle Scholar
  9. 9.
    Y. Kumaresan, Y. Pak, N. Lim, Y. Kim, M.-J. Park, S.-M. Yoon, H.-M. Youn, H. Lee, B.H. Lee, G.Y. Jung, Highly bendable ln-Ga-ZnO thin film transistors by using a thermally stable organic dielectric layer. Sci. Rep. 6(1), 37764 (2016)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, S.W. Liu, X.W. Sun, J.L. Zhao, G.K.L. Goh, Q.V. Vu, H.Y. Yu, Highly transparent solution processed In-Ga-Zn oxide thin films and thin film transistors. J. Sol-Gel. Sci. Technol. 55(3), 322–327 (2010)CrossRefGoogle Scholar
  11. 11.
    J.-S. Seo, J.-H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.-H.K. Park, B.-S. Bae, Solution-processed flexible fluorine-doped indium zinc oxide thin-film transistors fabricated on plastic film at low temperature. Sci. Rep 3(1), 2085 (2013)CrossRefGoogle Scholar
  12. 12.
    M.C. Gwinner, Y. Vaynzof, K.K. Banger, P.K.H. Ho, R.H. Friend, H. Sirringhaus, Solution-processed zinc oxide as high-performance air-stable electron injector in organic ambipolar light-emitting field-effect transistors. Adv. Funct. Mater. 20(20), 3457–3465 (2010)CrossRefGoogle Scholar
  13. 13.
    G.H. Kim, H.S. Kim, H.S. Shin, B. Du Ahn, K.H. Kim, H.J. Kim, Inkjet-printed InGaZnO thin film transistor. Thin Solid Films 517(14), 4007–4010 (2009)CrossRefGoogle Scholar
  14. 14.
    L. Lan, J. Zou, C. Jiang, B. Liu, L. Wang, J. Peng, Inkjet printing for electroluminescent devices: emissive materials, film formation, and display prototypes. Front. Optoelectron. 10(4), 329–352 (2017)CrossRefGoogle Scholar
  15. 15.
    G. Adamopoulos, A. Bashir, P.H. Wöbkenberg, D.D.C. Bradley, T.D. Anthopoulos, Electronic properties of ZnO field-effect transistors fabricated by spray pyrolysis in ambient air. Appl. Phys. Lett. 95(13), 133507 (2009)CrossRefGoogle Scholar
  16. 16.
    A. Sanchez-Juarez, A. Tiburcio-Silver, A. Ortiz, E.P. Zironi, J. Rickards, Electrical and optical properties of fluorine-doped ZnO thin films prepared by spray pyrolysis. Thin Solid Films 333(1–2), 196–202 (1998)CrossRefGoogle Scholar
  17. 17.
    D.E. Martins, G. Gozzi, L.F. Santos, Influence of spray-pyrolysis deposition parameters on the electrical properties of aluminium zinc oxides thin films. MRS Adv. 3(5), 283–289 (2018)CrossRefGoogle Scholar
  18. 18.
    G. Adamopoulos, S. Thomas, D.D.C. Bradley, M.A. McLachlan, T.D. Anthopoulos, Low-voltage ZnO thin-film transistors based on Y2O3 and Al2O3 high-k dielectrics deposited by spray pyrolysis in air. Appl. Phys. Lett. 98(12), 123503 (2011)CrossRefGoogle Scholar
  19. 19.
    A. Janotti, C.G. Van de Walle, Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72(12), 126501 (2009)CrossRefGoogle Scholar
  20. 20.
    E. Fortunato, A. Pimentel, L. Pereira, A. Gonçalves, G. Lavareda, H. Águas, I. Ferreira, C.N. Carvalho, R. Martins, High field-effect mobility zinc oxide thin film transistors produced at room temperature. J. Non. Cryst. Solids 338–340, 806–809 (2004)CrossRefGoogle Scholar
  21. 21.
    Y. Li, F. DellaValle, M. Simonnet, I. Yamada, J.J. Delaunay, Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires. Appl. Phys. Lett. 94(2), 3–6 (2009)Google Scholar
  22. 22.
    Wu Ping, Jie Zhang, Lu Jianguo, Xifeng Li, Wu Chuanjia, Rujie Sun, Lisha Feng, Qingjun Jiang, Lu Bin, Xinhua Pan, Zhizhen Ye, Instability induced by ultraviolet light in ZnO thin-film transistors. IEEE Trans. Electron Devices 61(5), 1431–1435 (2014)CrossRefGoogle Scholar
  23. 23.
    W. Kim, K.S. Chu, ZnO nanowire field-effect transistor as a UV photodetector; optimization for maximum sensitivity. Phys. Status Solidi Appl. Mater. Sci. 206(1), 179–182 (2009)CrossRefGoogle Scholar
  24. 24.
    P. Wu, J. Zhang, J. Lu, X. Li, C. Wu, R. Sun, Instability induced by ultraviolet light in ZnO thin-film transistors. Trans Electron Devices 61(5), 1431–1435 (2014)CrossRefGoogle Scholar
  25. 25.
    A. Gimenez, ZnO − paper based photoconductive UV sensor. J. Phys. 2(3), 282–287 (2010)Google Scholar
  26. 26.
    B.A. Vessalli, C.A. Zito, T.M. Perfecto, D.P. Volanti, T. Mazon, ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J. Alloys Compd. 696, 996–1003 (2017)CrossRefGoogle Scholar
  27. 27.
    M.P. Callao, Multivariate experimental design in environmental analysis. TrAC—Trends Anal. Chem. 62, 86–92 (2014)CrossRefGoogle Scholar
  28. 28.
    S.L.C. Ferreira, A.O. Caires, T.S. da Borges, A.M.D.S. Lima, L.O.B. Silva, W.N.L. dos Santos, Robustness evaluation in analytical methods optimized using experimental designs. Microchem. J. 131, 163–169 (2017)CrossRefGoogle Scholar
  29. 29.
    Experimental design and optimisation (4): Plackett–Burman designs. Anal. Methods, 5(8), 1901 (2013)Google Scholar
  30. 30.
    D.C. Montgomery, Design and Analysis of Experiments, 8th edn. (wiley, Hoboken, 2013)Google Scholar
  31. 31.
    C.A. Nunes, M.P. Freitas, A.C.M. Pinheiro, S.C. Bastos, Chemoface: a novel free user-friendly interface for chemometrics. J. Braz. Chem. Soc. 23(11), 2003–2010 (2012)CrossRefGoogle Scholar
  32. 32.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doǧan, V. Avrutin, S.J. Cho, H. Morko̧, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 1–103 (2005)CrossRefGoogle Scholar
  33. 33.
    J.P. Braga, G.R. De Lima, G. Gozzi, L.F. Santos, Electrical characterization of thin-film transistors based on solution-processed metal oxides, in Design, Simulation and Construction of Field Effect Transistors, ed. by  D. Vikraman, H.-S. Kim (InTech, London, 2018), p. 8Google Scholar
  34. 34.
    M.J. Anderson, P.J. Whitcomb, DOE Simplified: Practical Tools for Effective Experimentation, 3rd edn. (CRC Press, Boca Raton, 2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Physics Department/IBILCEUNESP – São Paulo State UniversitySão José Do Rio PretoBrazil
  2. 2.Physics Department/IGCEUNESP – São Paulo State UniversityRio ClaroBrazil

Personalised recommendations