Advertisement

Fast and continuous obtaining of Eu3+ doped CeO2 microspheres by ultrasonic spray pyrolysis: characterization and photocatalytic activity

  • A. A. G. SantiagoEmail author
  • N. F. Andrade Neto
  • E. Longo
  • C. A. Paskocimas
  • F. V. Motta
  • M. R. D. Bomio
Article
  • 1 Downloads

Abstract

In this work, CeO2:xEu3+ (x = 0, 0.01, 0.02, 0.04 and 0.08 mol%) microspheres were obtained by the fast and continuous ultrasonic spray pyrolysis method. Powders were characterized by X-ray diffraction (XRD), X-ray fluorescence analysis (XRF), scanning electronic microscopy (FESEM), Raman spectra, UV–Visible spectroscopy (UV–Vis) and photocatalytic activity. All XRD patterns were indexed by the cubic structure of the fluorite type, without the presence of secondary phases, indicating success in the Eu3+ doping in the CeO2 structure. In addition, The XRF analysis confirmed the presence of Eu in the CeO2 powders. In the Raman spectra of the samples occurs the vibrational mode F2g, which is a characteristic band of materials with the fluorite type structure. Moreover, as the Eu3+ ion increased, it was noticed the appearance of additional bands referring to oxygen vacancies. FESEM showed that the CeO2:xEu3+ particles have a spherical morphology with homogeneous chemical composition and particle size between 73 and 1560 nm. It can be seen a slight increase of defects in their morphology as the Eu3+ ion increases. The band gap varies between 3.22 and 3.28 eV, being influenced by defects in oxygen vacancies and the concentration of Ce3+ ion. The addition of Eu3+ generates the introduction of intermediary levels in the conduction band of CeO2, besides increasing the reactive species effects, favoring the photocatalysis of Rhodamine B dye.

Notes

Acknowledgment

The authors thank the following Brazilian research financing institutions for financial support: A.A.G. Santiago acknowledge financial support from National Council for Scientific and Technological Development—CNPq. Sao Paulo Research Foundation—FAPESP (Processo 2013/07296-2), (2016/23891-6). Coordination for the Improvement of Higher Education Personnel (CAPES)—Brazil (CAPES)—Finance Code 001 and CAPES/PROCAD 2013/2998/2014 and Graduate Program in Materials Science and Engineering (PPGCEM-UFRN).

Supplementary material

10854_2019_1506_MOESM1_ESM.docx (497 kb)
Supplementary material 1 (DOCX 496 kb)

References

  1. 1.
    N. Reddy, L. Chen, Y. Zhang, Y. Yang, J. Clean. Prod. 65, 561–567 (2014)CrossRefGoogle Scholar
  2. 2.
    J. Dasgupta, J. Sikder, S. Chakraborty, S. Curcio, E. Drioli, J. Environ. Manage. 147, 55–72 (2015)CrossRefGoogle Scholar
  3. 3.
    F. Deniz, R.A. Kepekci, Fibers Polym. 18, 278–284 (2017)CrossRefGoogle Scholar
  4. 4.
    E. Sahinkaya, A. Yurtsever, Ö. Çınar, Sep. Purif. Technol. 174, 445–454 (2017)CrossRefGoogle Scholar
  5. 5.
    K. Intarasuwan, P. Amornpitoksuk, S. Suwanboon, P. Graidist, Sep. Purif. Technol. 177, 304–312 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Yuan, P. Shen, Q. Li et al., J. Alloys Compd. 700, 12–17 (2017)CrossRefGoogle Scholar
  7. 7.
    C. Lv, J. Sun, G. Chen et al., Appl. Catal. B 208, 14–21 (2017)CrossRefGoogle Scholar
  8. 8.
    G. Han, W. Wang, B. Liu et al., Appl. Catal. B 208, 94–103 (2017)CrossRefGoogle Scholar
  9. 9.
    X. Zhang, A. Tang, Y. Jia, Y. Wang, H. Wang, S. Zhang, J. Alloys Compd. 701, 16–22 (2017)CrossRefGoogle Scholar
  10. 10.
    T. Zhang, M. Liu, Y. Meng, B. Huang, X. Pu, X. Shao, Sep. Purif. Technol. 206, 149–157 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Soltanabadi, M. Jourshabani, Z. Shariatinia, Sep. Purif. Technol. 202, 227–241 (2018)CrossRefGoogle Scholar
  12. 12.
    M.M. Ibrahim, S.A. El-Molla, S.A. Ismail, J. Mol. Struct. 1158, 234–244 (2018)CrossRefGoogle Scholar
  13. 13.
    A. Khataee, P. Gholami, D. Kalderis, E. Pachatouridou, M. Konsolakis, Ultrason. Sonochem. 41, 503–513 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Gnanam, V. Rajendran, J. Alloys Compd. 735, 1854–1862 (2018)CrossRefGoogle Scholar
  15. 15.
    K. Mani Rahulan, N. Angeline Little Flower, R. Annie Sujatha, P. Mohana Priya, C. Gopalakrishnan, Optics Laser Technol. 101, 358–362 (2018)CrossRefGoogle Scholar
  16. 16.
    V. Shanmugam, R. Zapf, V. Hessel, H. Pennemann, G. Kolb, Appl. Catal. B 226, 403–411 (2018)CrossRefGoogle Scholar
  17. 17.
    C. Liu, H. Tai, P. Zhang et al., Sens. Actuators B 261, 587–597 (2018)CrossRefGoogle Scholar
  18. 18.
    X. Ma, P. Lu, P. Wu, Ceram. Int. 44, 5284–5290 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Yin, W. Qiu, L. Song et al., ChemistrySelect 3, 2683–2691 (2018)CrossRefGoogle Scholar
  20. 20.
    Z. Xiaolong, D. Dong, L. Guijing, F. Wenjie, Y. Sen, S. Zhanbo, Nanotechnology 29, 095606 (2018)CrossRefGoogle Scholar
  21. 21.
    Q. Sun, Z. Fu, Z. Yang, Ceram. Int. 44, 3707–3711 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Xu, N. Farandos, M. Rosa et al., Int. J. Appl. Ceram. Technol. 15, 315–327 (2018)CrossRefGoogle Scholar
  23. 23.
    K.M. Kumar, M. Mahendhiran, M.C. Diaz et al., Mater. Lett. 214, 15–19 (2018)CrossRefGoogle Scholar
  24. 24.
    W.M. Al-Shawafi, N. Salah, A. Alshahrie et al., J. Mater. Sci.: Mater. Med. 28, 177 (2017)Google Scholar
  25. 25.
    L. Shen, H. Zhang, G. Liu, H. Fang, J. Mater. Sci.: Mater. Electron. 29, 2045–2050 (2018)Google Scholar
  26. 26.
    D. Chandrakar, J.K. Saluja, N.S. Suryanarayana et al., J. Mater. Sci.: Mater. Electron. 28, 17271–17277 (2017)Google Scholar
  27. 27.
    D. Chandrakar, J. Kaur, V. Dubey, N.S. Suryanarayana, Y. Parganiha, Luminescence 30, 1201–1206 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Shao-You, Z. Cheng-Gang, Z. Shi-Biao, Z. Wei-Guo, F. Qing-Ge, Sci. Adv. Mater. 10, 155–164 (2018)CrossRefGoogle Scholar
  29. 29.
    C. Tang, B. Sun, J. Sun et al., Catal. Today 281, 575–582 (2017)CrossRefGoogle Scholar
  30. 30.
    A. Gogoi, K.C. Sarma, Mater. Chem. Phys. 194, 327–336 (2017)CrossRefGoogle Scholar
  31. 31.
    E.A. Derevyannikova, T.Y. Kardash, L.S. Kibis et al., Phys. Chem. Chem. Phys. 19, 31883–31897 (2017)CrossRefGoogle Scholar
  32. 32.
    H. Zheng, Y. Hong, J. Xu, B. Xue, Y.-X. Li, Catal. Commun. 106, 6–10 (2018)CrossRefGoogle Scholar
  33. 33.
    A. Phuruangrat, S. Thongtem, T. Thongtem, Mater. Lett. 196, 61–63 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Phuruangrat, T. Thongtem, S. Thongtem, Mater. Lett. 193, 161–164 (2017)CrossRefGoogle Scholar
  35. 35.
    A.A. Farghali, M.H. Khedr, S.I. El-Dek, A.E. Megahed, Ultrason. Sonochem. 42, 556–566 (2018)CrossRefGoogle Scholar
  36. 36.
    B. Bayyappagari, K. Shaik, M.R. Nasina, O. Inturu, S.R. Dugasani, Optik—Int. J. Light Electron Opt. 154, 821–827 (2018)CrossRefGoogle Scholar
  37. 37.
    P.N. Medeiros, A.A.G. Santiago, E.A.C. Ferreira et al., J. Alloys Compd. 747, 1078–1087 (2018)CrossRefGoogle Scholar
  38. 38.
    M. Kundu, G. Karunakaran, E. Kolesnikov et al., J. Ind. Eng. Chem. 59, 90–98 (2018)CrossRefGoogle Scholar
  39. 39.
    A. Masud, Y. Cui, J.D. Atkinson, N. Aich, J. Nanopart. Res. 20, 64 (2018)CrossRefGoogle Scholar
  40. 40.
    Q. Bkour, K. Im, O.G. Marin-Flores, M.G. Norton, S. Ha, J. Kim, Appl. Catal. A 553, 74–81 (2018)CrossRefGoogle Scholar
  41. 41.
    N. Shatrova, A. Yudin, V. Levina et al., Mater. Res. Bull. 99, 189–195 (2018)CrossRefGoogle Scholar
  42. 42.
    Y. Li, X. Li, Z. Wang, H. Guo, J. Wang, J. Energy Chem. 27, 447–450 (2018)CrossRefGoogle Scholar
  43. 43.
    H. Das, N. Debnath, A. Toda et al., Adv. Powder Technol. 29, 283–288 (2018)CrossRefGoogle Scholar
  44. 44.
    A.A.G. Santiago, L.X. Lovisa, P.N. Medeiros et al., Ultrason. Sonochem. 56, 14–24 (2019)CrossRefGoogle Scholar
  45. 45.
    P. Majerič, D. Jenko, B. Friedrich, R. Rudolf, Adv. Powder Technol. 28, 876–883 (2017)CrossRefGoogle Scholar
  46. 46.
    Z. Cheng, P. Foroughi, A. Behrens, Ceram. Int. 43, 3431–3434 (2017)CrossRefGoogle Scholar
  47. 47.
    H. Shimada, T. Yamaguchi, T. Suzuki, H. Sumi, Y. Fujishiro, Adv. Powder Technol. 27, 1438–1445 (2016)CrossRefGoogle Scholar
  48. 48.
    H.J. Park, G.B. Kim, S.J. Jung et al., J. Ceramic Process. Res. 17, 818–824 (2016)Google Scholar
  49. 49.
    B. Li, X. Shao, Y. Hao, Y. Zhao, RSC Adv. 5, 85640–85645 (2015)CrossRefGoogle Scholar
  50. 50.
    S.-J. Shih, W.-L. Tzeng, W.-L. Kuo, Surf. Coat. Technol. 259, 302–309 (2014)CrossRefGoogle Scholar
  51. 51.
    C. Goulart, E. Djurado, J. Eur. Ceram. Soc. 33, 769–778 (2013)CrossRefGoogle Scholar
  52. 52.
    S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, J. Nanopart. Res. 14, 879 (2012)CrossRefGoogle Scholar
  53. 53.
    K.Y. Jung, J.C. Lee, D.S. Kim, B.-K. Choi, W.-J. Kang, J. Lumin. 192, 1313–1321 (2017)CrossRefGoogle Scholar
  54. 54.
    B.H. Min, J.C. Lee, K.Y. Jung, D.S. Kim, B.-K. Choi, W.-J. Kang, RSC Adv. 6, 81203–81210 (2016)CrossRefGoogle Scholar
  55. 55.
    C.R.R. Almeida, L.X. Lovisa, A.A.G. Santiago et al., J. Mater. Sci.: Mater. Electron. 28, 16867–16879 (2017)Google Scholar
  56. 56.
    A.A.G. Santiago, C.R.R. Almeida, R.L. Tranquilin et al., Ceram. Int. 44, 3775–3786 (2018)CrossRefGoogle Scholar
  57. 57.
    C.-Y. Huang, R.-T. Guo, W.-G. Pan et al., J. CO2 Util. 26, 487–495 (2018)CrossRefGoogle Scholar
  58. 58.
    Y.-Y. Li, X. Dong, H.-Q. Zhang, Procedia Eng. 52, 202–207 (2013)CrossRefGoogle Scholar
  59. 59.
    H. Rietveld, J. Appl. Crystallogr. 2, 65–71 (1969)CrossRefGoogle Scholar
  60. 60.
    B. Toby, J. Appl. Crystallogr. 34, 210–213 (2001)CrossRefGoogle Scholar
  61. 61.
    R. Shannon, Acta Crystallogr. A 32, 751–767 (1976)CrossRefGoogle Scholar
  62. 62.
    M.R. Moura, A.P. Ayala, I. Guedes, M. Grimsditch, C.K. Loong, L.A. Boatner, J. Appl. Phys. 95, 1148–1151 (2004)CrossRefGoogle Scholar
  63. 63.
    W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, J. Solid State Chem. 184, 3014–3020 (2011)CrossRefGoogle Scholar
  64. 64.
    C. Schilling, A. Hofmann, C. Hess, M.V. Ganduglia-Pirovano, J. Phys. Chem. C 121, 20834–20849 (2017)CrossRefGoogle Scholar
  65. 65.
    B.M. Reddy, T. Vinodkumar, D. Naga Durgasri, A. Rangaswamy, Proc. Natl. Acad. Sci. India A 87, 155–161 (2017)Google Scholar
  66. 66.
    A. Kremenovic, D.K. Bozanic, A.M. Welsch et al., J. Nanosci. Nanotechnol. 12, 8893–8899 (2012)CrossRefGoogle Scholar
  67. 67.
    V.I. Parvulescu, C. Tiseanu, Catal. Today 253, 33–39 (2015)CrossRefGoogle Scholar
  68. 68.
    G.L. Messing, S.-C. Zhang, G.V. Jayanthi, J. Am. Ceram. Soc. 76, 2707–2726 (1993)CrossRefGoogle Scholar
  69. 69.
    D.R. Lide, Handbook of Chemistry and Physics, 85th edn. (CRC Press, Boca Raton, 2004)Google Scholar
  70. 70.
    D.L. Wood, J. Tauc, Phys. Rev. B 5, 3144–3151 (1972)CrossRefGoogle Scholar
  71. 71.
    R. Bakkiyaraj, M. Balakrishnan, G. Bharath, N. Ponpandian, J. Alloys Compd. 724, 555–564 (2017)CrossRefGoogle Scholar
  72. 72.
    B.S. Rohini, H. Nagabhushana, G.P. Darshan et al., J. Alloys Compd. 724, 897–909 (2017)CrossRefGoogle Scholar
  73. 73.
    H. Li, F. Meng, J. Gong, Z. Fan, R. Qin, J. Alloys Compd. 722, 489–498 (2017)CrossRefGoogle Scholar
  74. 74.
    C. Ma, J. Fu, J. Chen et al., Ind. Eng. Chem. Res. 56, 9090–9097 (2017)CrossRefGoogle Scholar
  75. 75.
    J. Wang, Z. Cao, J. Zhang et al., J. Mater. Sci.: Mater. Electron. 28, 12858–12865 (2017)Google Scholar
  76. 76.
    W. Zou, B. Deng, X. Hu et al., Appl. Catal. B 238, 111–118 (2018)CrossRefGoogle Scholar
  77. 77.
    Y. Ding, J. Wang, S. Xu, K.-Y.A. Lin, S. Tong, Sep. Purif. Technol. 207, 92–98 (2018)CrossRefGoogle Scholar
  78. 78.
    Y. Lu, Y. Lin, T. Xie, S. Shi, H. Fan, D. Wang, Nanoscale 4, 6393–6400 (2012)CrossRefGoogle Scholar
  79. 79.
    J. Tang, X. Chen, Y. Liu et al., J. Phys. Chem. Solids 73, 198–203 (2012)CrossRefGoogle Scholar
  80. 80.
    Q. Yin, R. Qiao, Z. Li, X.L. Zhang, L. Zhu, J. Alloys Compd. 618, 318–325 (2015)CrossRefGoogle Scholar
  81. 81.
    A.S. Weber, A.M. Grady, R.T. Koodali, Catal. Sci. Technol. 2, 683–693 (2012)CrossRefGoogle Scholar
  82. 82.
    M. Stefan, C. Leostean, O. Pana et al., Appl. Surf. Sci. 390, 248–259 (2016)CrossRefGoogle Scholar
  83. 83.
    M. Mittal, A. Gupta, O.P. Pandey, Sol. Energy 165, 206–216 (2018)CrossRefGoogle Scholar
  84. 84.
    F. Dong, T. Xiong, Y. Sun et al., Appl. Catal. B 219, 450–458 (2017)CrossRefGoogle Scholar
  85. 85.
    F. Chen, Y. Cao, D. Jia, Appl. Surf. Sci. 257, 9226–9231 (2011)CrossRefGoogle Scholar
  86. 86.
    M.M. Momeni, M. Hakimian, A. Kazempour, Ceram. Int. 41, 13692–13701 (2015)CrossRefGoogle Scholar
  87. 87.
    S. Xing, T. Li, Y. Gao, J. Liu, Optik 183, 266–272 (2019)CrossRefGoogle Scholar
  88. 88.
    N.A. Portela, S.R.C. Silva, L.F.R. de Jesus et al., Fuel 216, 681–685 (2018)CrossRefGoogle Scholar
  89. 89.
    J. Hao, Y. Jiang, X. Gao, F. Xie, Z. Shao, B. Yi, J. Membr. Sci. 522, 23–30 (2017)CrossRefGoogle Scholar
  90. 90.
    X. Zhao, W. Li, F. Kong et al., Mater. Chem. Phys. 219, 461–467 (2018)CrossRefGoogle Scholar
  91. 91.
    Y. Hwangbo, Y.-I. Lee, J. Alloys Compd. 771, 821–826 (2019)CrossRefGoogle Scholar
  92. 92.
    Z. Lv, Q. Zhong, M. Ou, Appl. Surf. Sci. 376, 91–96 (2016)CrossRefGoogle Scholar
  93. 93.
    N.H. Deepthi, G.P. Darshan, R.B. Basavaraj, B.D. Prasad, H. Nagabhushana, Sens. Actuators B 255, 3127–3147 (2018)CrossRefGoogle Scholar
  94. 94.
    K. Singh, K. Kumar, S. Srivastava, A. Chowdhury, Ceram. Int. 43, 17041–17047 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.LSQM, DEMAT, UFRNNatalBrazil
  2. 2.CDMF-UFSCar, Universidade Federal de São CarlosSão CarlosBrazil

Personalised recommendations