Advertisement

Microwave-assisted synthesis of FexZn1−xO nanoparticles for use in MEH-PPV nanocomposites and their application in polymer light-emitting diodes

  • Thaiskang Jamatia
  • David SkodaEmail author
  • Pavel Urbanek
  • Jakub Sevcik
  • Jan Maslik
  • Lukas Munster
  • Lukas Kalina
  • Ivo Kuritka
Article
  • 51 Downloads

Abstract

A one-step microwave-assisted polyol method was used to fabricate FexZn1−xO (x = 0.01, 0.05, 0.10) nanoparticles. Zinc acetate dihydrate, iron (III) acetylacetonate, oleic acid and diethylene glycol were placed in a Teflon-lined reaction vessel. The reaction mixture was heated up to 250 °C for 15 min in a microwave reactor. The surface modification with oleic acid prevented agglomeration of the nanoparticles. The X-ray diffraction analysis revealed characteristics wurtzite hexagonal structure of ZnO and successful incorporation of the Fe dopant into the host crystal lattice. Doping of ZnO by Fe led to bandgap modification as estimated by Tauc plot. The as-prepared nanopowders were dispersed in toluene and mixed with a poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) polymer to make stable homogenous dispersions. Then, the FexZn1−xO/MEH-PPV nanocomposite thin films were prepared by spin coating and used as thin active layers in polymer light-emitting diodes. The thickness of deposited FexZn1−xO/MEH-PPV film was ca. 30 nm and that of reference neat MEH-PPV film was ca. 25 nm. The electroluminescent spectroscopy study showed that direct blending of MEH-PPV with Fe-doped ZnO nanoparticles is a simple and effective approach to significantly increase the luminance intensity of the diode in comparison to the diode fabricated by neat MEH-PPV.

Notes

Acknowledgement

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic - Program NPU I (LO1504) and Internal Grant Agency of Tomas Bata University in Zlin (Grant Numbers: IGA/CPS/2017/008, IGA/CPS/2018/007 and IGA/CPS/2019/007). This contribution was written with the support of Operational Program Research and Development for Innovations co-funded by the European Regional Development Fund (ERDF) and the national budget of Czech Republic, within the framework of project CPS - strengthening research capacity (Reg. Number: CZ.1.05/2.1.00/19.0409).

Supplementary material

10854_2019_1473_MOESM1_ESM.docx (6.6 mb)
Supplementary material 1 (DOCX 6785 kb)

References

  1. 1.
    R. Joshi, P. Kumar, A. Gaur, K. Asokan, Appl. Nanosci. 4, 531 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Meng, J. Xing, Z. Li, Q. Li, A.C.S. Appl, Mater. Interfaces 7, 27449 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Belkhaoui, R. Lefi, N. Mzabi, H. Smaoui, J. Mater. Sci. 29, 7020 (2018)Google Scholar
  4. 4.
    I.N. Reddy, C.V. Reddy, M. Sreedhar, J. Shim, M. Cho, D. Kim, Mater. Sci. Eng. B 240, 33 (2019)CrossRefGoogle Scholar
  5. 5.
    S.K. Neogi, M.A. Ahmed, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 481, 443 (2019)CrossRefGoogle Scholar
  6. 6.
    A. Samanta, M.N. Goswami, P.K. Mahapatra, J. Alloys Compd. 730, 399 (2018)CrossRefGoogle Scholar
  7. 7.
    A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, J. Alloys Compd. 786, 960 (2019)CrossRefGoogle Scholar
  8. 8.
    L. Qian, Y. Zheng, K.R. Choudhury, D. Bera, F. So, J. Xue, P.H. Holloway, Nano Today 5, 384 (2010)CrossRefGoogle Scholar
  9. 9.
    W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Adv. Mater. 16, 1009 (2004)CrossRefGoogle Scholar
  10. 10.
    S. Bhatia, N. Verma, R.K. Bedi, Results Phys. 7, 801 (2017)CrossRefGoogle Scholar
  11. 11.
    T.M. Hammad, S. Griesing, M. Wotocek, S. Kuhn, R. Hempelmann, U. Hartmann, J.K. Salem, Int. J. Nanoparticles 6, 324 (2013)CrossRefGoogle Scholar
  12. 12.
    Y.Q. Su, Y. Zhu, D. Yong, M. Chen, L. Su, A. Chen, Y. Wu, B. Pan, Z. Tang, J. Phys. Chem. Lett. 7, 1484 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Singh, P. Dhiman, K.M. Batoo, R.K. Kotnala, Micro. Nano Lett. 7, 1333 (2012)Google Scholar
  14. 14.
    K. Kumar, M. Chitkara, I. Singh, D. Mehta, S. Kumar, J. Alloys Compd. 588, 681 (2014)CrossRefGoogle Scholar
  15. 15.
    J. Iqbal, T. Jan, Y. Ronghai, S.H. Naqvi, I. Ahmad, Nano-Micro Lett. 6, 242 (2014)CrossRefGoogle Scholar
  16. 16.
    M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A. Adelina, W. Hechenleitner, E.A.G. Pineda, Mater. Lett. 159, 84 (2015)CrossRefGoogle Scholar
  17. 17.
    A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngComm 20, 1716 (2018)CrossRefGoogle Scholar
  18. 18.
    M.M. Ovhal, A.S. Kumar, P. Khullar, M. Kumar, A.C. Abhyankar, Mater. Chem. Phys. 195, 58 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Singhal, S.N. Achary, A.K. Tyagi, P.K. Manna, S.M. Yusuf, Mater. Sci. Eng. B 153, 47 (2008)CrossRefGoogle Scholar
  20. 20.
    J. Wang, J. Wan, K. Chen, Mater. Lett. 64, 2373 (2010)CrossRefGoogle Scholar
  21. 21.
    I. Bilecka, L. Luo, I. Djerdj, M.D. Rossell, M. Jagodič, Z. Jagličić, Y. Masubuchi, S. Kikkawa, M. Niederberger, J. Phys. Chem. C 115, 1484 (2011)CrossRefGoogle Scholar
  22. 22.
    D. Skoda, P. Urbanek, J. Sevcik, L. Munster, J. Antos, I. Kuritka, Mater. Sci. Eng. B 232–235, 22 (2018)CrossRefGoogle Scholar
  23. 23.
    D. Skoda, P. Urbanek, J. Sevcik, L. Munster, V. Nadazdy, D.A. Cullen, P. Bazant, J. Antos, I. Kuritka, Org. Electron. Phys. Mater. Appl. 59, 337 (2018)Google Scholar
  24. 24.
    Y. Cun, C. Song, H. Zheng, J. Wang, C. Mai, Y. Liu, J. Li, D. Yu, J. Wang, L. Ying, J. Peng, Y. Cao, J. Mater. Chem. C (2019)Google Scholar
  25. 25.
    T. Hanemann, D.V. Szabó, Materials (Basel) 3, 3468 (2010)CrossRefGoogle Scholar
  26. 26.
    V. A. L. Roy, Z. X. Xu, P. Stallinga, H. F. Xiang, B. Yan, and C. M. Che, Digest of Paper – Microprocesses and Nanotechnology 2007; 20th International Microprocesses and Nanotechnology Conference MNC 223509, 104 (2007)Google Scholar
  27. 27.
    M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Sin, M. Rusop, Appl. Surf. Sci. 275, 75 (2013)CrossRefGoogle Scholar
  28. 28.
    F. Habelhames, L. Lamiri, W. Zerguine, B. Nessark, Mater. Sci. Semicond. Process. 16, 727 (2013)CrossRefGoogle Scholar
  29. 29.
    R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Logdlund, W.R. Salaneck, Nature 397, 121 (1999)CrossRefGoogle Scholar
  30. 30.
    J. Huang, Z. Xu, S. Zhao, Y. Li, F. Zhang, L. Song, Y. Wang, X. Xu, Solid State Commun. 142, 417 (2007)CrossRefGoogle Scholar
  31. 31.
    S.L. Zhao, P.Z. Kan, Z. Xu, C. Kong, D.W. Wang, Y. Yan, Y.S. Wang, Org. Electron. Phys. Mater. Appl. Mater. Appl. 11, 789 (2010)Google Scholar
  32. 32.
    D.-W. Wang, S.-L. Zhao, Z. Xu, C. Kong, W. Gong, Org. Electron. 12, 92 (2011)CrossRefGoogle Scholar
  33. 33.
    G. Luka, L. Nittler, E. Lusakowska, P. Smertenko, Org. Electron. 45, 240 (2017)CrossRefGoogle Scholar
  34. 34.
    R.K. Pandey, R. Mishra, P. Tiwari, R. Prakash, Org. Electron. 45, 26 (2017)CrossRefGoogle Scholar
  35. 35.
    J.S. Shankar, S. Ashok Kumar, B.K. Periyasamy, S.K. Nayak, Polym. Plast. Technol. Eng. 58, 148 (2018)Google Scholar
  36. 36.
    N. Gupta, R. Grover, D.S. Mehta, K. Saxena, Synth. Met. 221, 261 (2016)CrossRefGoogle Scholar
  37. 37.
    A. Petrella, M.L. Curri, M. Striccoli, A. Agostiano, P. Cosma, Thin Solid Films 595, 157 (2015)CrossRefGoogle Scholar
  38. 38.
    N. Bano, S. Zaman, A. Zainelabdin, S. Hussain, I. Hussain, O. Nur, M. Willander, J. Appl. Phys. 108, 1 (2010)CrossRefGoogle Scholar
  39. 39.
    A.N. Aleshin, I.P. Shcherbakov, E.L. Alexandrova, E.A. Lebedev, Solid State Commun. 146, 161 (2008)CrossRefGoogle Scholar
  40. 40.
    D. Hewidy, A.S. Gadallah, G.A. Fattah, Phys. B 507, 46 (2017)CrossRefGoogle Scholar
  41. 41.
    Y.-J. Choi, S.C. Gong, C.-S. Park, H.-S. Lee, J.G. Jang, H.J. Chang, G.Y. Yeom, H.-H. Park, A.C.S. Appl, Mater. Interfaces 5, 3650 (2013)CrossRefGoogle Scholar
  42. 42.
    R. Deshmukh, M. Niederberger, Chem. A Eur. J. 23, 8542 (2017)CrossRefGoogle Scholar
  43. 43.
    K. Raja, P.S. Ramesh, D. Geetha, Spectrochim. Acta Part A 131, 183 (2014)CrossRefGoogle Scholar
  44. 44.
    P.D. Cozzoli, A. Kornowski, H. Weller, J. Phys. Chem. B 109, 2638 (2005)CrossRefGoogle Scholar
  45. 45.
    S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, R.V. Ramanujan, Prog. Nat. Sci. Mater. Int. 24, 142 (2014)CrossRefGoogle Scholar
  46. 46.
    Z.N. Kayani, E. Abbas, Z. Saddiqe, S. Riaz, S. Naseem, Mater. Sci. Semicond. Process. 88, 109 (2018)CrossRefGoogle Scholar
  47. 47.
    C. Han, L. Duan, X. Zhao, Z. Hu, Y. Niu, W. Geng, J. Alloys Compd. 770, 854 (2019)CrossRefGoogle Scholar
  48. 48.
    M.A. Ciciliati, M.F. Silva, D.M. Fernandes, M.A.C. De Melo, A.A.W. Hechenleitner, E.A.G. Pineda, Mater. Lett. 159, 84 (2015)CrossRefGoogle Scholar
  49. 49.
    C. Aydn, M.S. Abd El -Sadek, K. Zheng, I.S. Yahia, F. Yakuphanoglu, Opt. Laser Technol. 48, 447 (2013)CrossRefGoogle Scholar
  50. 50.
    A. Debernardi, M. Fanciulli, Phys. B 401–402, 451 (2007)CrossRefGoogle Scholar
  51. 51.
    M.M. Hassan, W. Khan, A. Azam, A.H. Naqvi, J. Lumin. 145, 160 (2014)CrossRefGoogle Scholar
  52. 52.
    S. Kanchana, M.J. Chithra, S. Ernest, K. Pushpanathan, J. Lumin. 176, 6 (2016)CrossRefGoogle Scholar
  53. 53.
    M.V. Limaye, S.B. Singh, R. Das, P. Poddar, S.K. Kulkarni, J. Solid State Chem. 184, 391 (2011)CrossRefGoogle Scholar
  54. 54.
    I. Musa, F. Massuyeau, E. Faulques, T.P. Nguyen, Synth. Met. 162, 1756 (2012)CrossRefGoogle Scholar
  55. 55.
    P. Urbánek, I. Kuřitka, S. Daniš, J. Toušková, J. Toušek, Polym.(UK) 55, 4050 (2014)CrossRefGoogle Scholar
  56. 56.
    P. Urbánek, I. Kuřitka, J. Ševčík, J. Toušková, J. Toušek, V. Nádaždy, P. Nádaždy, K. Végsö, P. Šiffalovič, R. Rutsch, M. Urbánek, Polym. (Guildf) 169, 243 (2019)CrossRefGoogle Scholar
  57. 57.
    T.-W.F. Chang, S. Musikhin, L. Bakueva, L. Levina, M.A. Hines, P.W. Cyr, E.H. Sargent, Appl. Phys. Lett. 84, 4295 (2004)CrossRefGoogle Scholar
  58. 58.
    M. Pientka, V. Dyakonov, D. Meissner, A. Rogach, D. Talapin, H. Weller, L. Lutsen, D. Vanderzande, Nanotechnology 15, 163 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre of Polymer SystemsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Materials Research CentreBrno University of TechnologyBrnoCzech Republic

Personalised recommendations