Advertisement

Study on the effects of the magneto assisted deposition on ammonia gas sensing properties of polyaniline

  • Abdolhossein Sáaedi
  • Pejman ShabaniEmail author
  • Ramin YousefiEmail author
Article
  • 13 Downloads

Abstract

The flexible polyaniline (PAni) films were deposited on the polyethylene terephthalate (PET) substrates by a spin-coating method under different magnetic field (MF) strength from 0.0 to 0.7 T. By increasing the magnetic field strength, we observed that crystalline quality, surface area as well as protonation of the PAni films were increased. Room temperature (RT) ammonia gas sensing application of these films was also investigated and it was observed the gas sensing performance of the PAni films was improved by the increase of the magnetic field strength up to 0.5 T. It was seen, the important gas sensing device parameters such as sensitivity, selectivity, stability, and response time of the PAni film, which was deposited under 0.5 T of magnetic field condition, 7.5, 1.49, 1.21, and 7.5 times, respectively, were higher than the PAni film gas sensor that was deposited under 0.0 T of magnetic field condition.

Notes

Acknowledgements

R. Yousefi and P. Shabani gratefully acknowledge the Islamic Azad University (I.A.U), Masjed-Soleiman and Mahshahr Branches for their supports of this research work.

References

  1. 1.
    A.M. Soleimanpour, A.H. Jayatissa, G. Sumanasekera, Surface and gas sensing properties of nanocrystalline nickel oxide thin films. Appl. Surf. Sci. 276, 291–297 (2013)CrossRefGoogle Scholar
  2. 2.
    L.G. Close, F.I. Catlin, A.M. Cohn, Acute and chronic effects of ammonia burns of the respiratory tract. Arch. Otolaryngol. 106(3), 151–158 (1980)CrossRefGoogle Scholar
  3. 3.
    S. Sharma, A. Kumar, N. Singh, D. Kaur, Excellent room temperature ammonia gas sensing properties of n-MoS2/p-CuO heterojunction nanoworms. Sens. Actuators B 275, 499–507 (2018)CrossRefGoogle Scholar
  4. 4.
    S.M. Kanan, O.M. El-Kadri, I.A. Abu-Yousef, M.C. Kanan, Semiconducting metal oxide based sensors for selective gas pollutant detection. Sensors 9, 8158–8196 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Sáaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRefGoogle Scholar
  6. 6.
    D. Zhang, Z. Wu, X. Zong, Flexible and highly sensitive H2S gas sensor based on in situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators B 289, 32–41 (2019)CrossRefGoogle Scholar
  7. 7.
    C.-T. Lee, Y.-S. Wang, High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane. J. Alloys Compd. 789, 693–696 (2019)CrossRefGoogle Scholar
  8. 8.
    J. Gong, Y. Li, Z. Hu, Z. Zhou, Y. Deng, Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J. Phys. Chem. C 114(21), 9970–9974 (2010)CrossRefGoogle Scholar
  9. 9.
    Yang Li, Mingfei Jiao, Huijie Zhao, Mujie Yang, High performance gas sensors based on in situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties. Sens. Actuators B 264(1), 285–295 (2018)CrossRefGoogle Scholar
  10. 10.
    A.A. Syed, M.K. Dinesan, Review: polyaniline—a novel polymeric material. Talanta 38, 815–837 (1991)CrossRefGoogle Scholar
  11. 11.
    G.D. Khuspe, S.T. Navale, D.K. Bandgar, R.D. Sakhare, M.A. Chougule, V.B. Patil, SnO2 nanoparticles-modified polyaniline films as highly selective, sensitive, reproducible and stable ammonia sensors. Electron. Mater. Lett. 10, 191–197 (2014)CrossRefGoogle Scholar
  12. 12.
    D.K. Bandgar, S.T. Navale, Y.H. Navale, S.M. Ingole, F.J. Stadler, N. Ramgir, D.K. Aswal, S.K. Gupta, R.S. Mane, V.B. Patil, Flexible camphor sulfonic acid-doped PAni/α-Fe2O3 nanocomposite films and their room temperature ammonia sensing activity. Mater. Chem. Phys. 189, 191–197 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Shabani, A. Qarehbaqi, F.A. Boroumand, Selective enhancement of intra-chain charge transport to improve ammonia sensing performance in polyaniline layers. Electron. Mater. Lett. 12(1), 107–112 (2016)CrossRefGoogle Scholar
  14. 14.
    A.G. Revelli, T. Kusne, J.L. Kowalewski, L.E. Snyder, G.K. Weiss, R.D. Fedder, D.N.Lambeth McCullough, Volatile organic compound detection using nanostructured copolymers. Nano Lett. 6, 1598–1602 (2006)CrossRefGoogle Scholar
  15. 15.
    S. Matindoust, A. Farzi, M. Baghaei-Nejad, M.H. Shahrokh-Abadi, Z. Zou, L.R. Zheng, Ammonia gas sensor based on flexible polyaniline films for rapid detection of spoilage in protein-rich foods. J. Mater. Sci.: Mater. Electron. 28(11), 7760–7768 (2017)Google Scholar
  16. 16.
    J. Torbet, Y.F. Nicolau, D. Djurado, Orientation of CSA-protonated polyaniline chains in solution in m-cresol and in films induced by a high magnetic field. Synth. Met. 101, 825–826 (1999)CrossRefGoogle Scholar
  17. 17.
    O.P. Dimitriev, Formation of organic films via a magnetomechanical effect. J. Phys. D 40, 850–855 (2007)CrossRefGoogle Scholar
  18. 18.
    L. Ma, W. Lu, K.L. Huang, M.Y. Gan, C. Chen, J. Yan, Analysis and characterization of microscopic morphology and orientation structure of polyaniline polymerized in a constant magnetic field. Chin. J. Polym. Sci. 27, 487–492 (2009)CrossRefGoogle Scholar
  19. 19.
    I. Rintoul, C. Wandrey, Magnetic field effects on the free radical solution polymerization of acrylamide. Polymer 48, 1903–1914 (2007)CrossRefGoogle Scholar
  20. 20.
    D.K. Bandgar, S.T. Navale, S.R. Nalage, R.S. Mane, F.J. Stadler, D.K. Aswal, S.K. Gupta, V.B. Patil, Simple and low-temperature polyaniline-based flexible ammonia sensor: a step towards laboratory synthesis to economical device design. J. Mater. Chem. C 3, 9461–9468 (2015)CrossRefGoogle Scholar
  21. 21.
    J.H. Lee, M.S. Cho, H.J. Choi, M.S. Jhon, Effect of polymerization temperature on polyaniline based electrorheological suspensions. Colloid Polym. Sci. 227, 73–76 (1999)CrossRefGoogle Scholar
  22. 22.
    L. Ma, L. Luo, H. Ma, X. Li, W. Su, S. Hao, Characterization and analysis of the electrochemical properties of the polyaniline synthesized by emulsion polymerization in constant magnetic field (0.4 T). Chin. J. Chem. 28, 1871–1875 (2010)CrossRefGoogle Scholar
  23. 23.
    S.S. Pandule, M.R. Patil, R.S. Keri, Properties and ammonia gas sensing applications of different inorganic acid-doped poly (2-chloroanilines). Polym. Bull. 75(10), 4469–4483 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Ma, W. Lu, M. Gan, Influences of constant magnetic field (0.4 T) on PANI micro-orientation structure. J. Chem. 66, 1259–1264 (2008)Google Scholar
  25. 25.
    A.Z. Sadek, C.O. Baker, D.A. Powell, W. Wlodarski, R.B. Kaner, K. Kalantarzadeh, Polyaniline nanofiber based surface acoustic wave gas sensors—effect of nanofiber diameter on H2 response. IEEE Sens. J. 7, 213–218 (2007)CrossRefGoogle Scholar
  26. 26.
    J.E. Albuquerque, L.H.C. Mattoso, R.M. Faria, J.G. Masters, A.G. MacDiarmid, Study of the interconversion of polyaniline oxidation states by optical absorption spectroscopy. Synth. Met. 146, 1 (2004)CrossRefGoogle Scholar
  27. 27.
    R.P. McCall, J.M. Ginder, M.G. Roe, G.E. Asturias, E.M. Scherr, A.G. MacDiarmid, A.J. Epstein, Massive polarons in large-energy-gap polymers”. J. Phys. Rev. B 39, 10174–10179 (1989)CrossRefGoogle Scholar
  28. 28.
    M. Trchovaa, J. Stejskal, Polyaniline: the infrared spectroscopy of conducting polymer nanotubes. J. Pure Appl. Chem. 83, 1801 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Dominic, T. David, A. Vanaja, K.K.S. Kumar, Effect of LiCl on conductivity of polyaniline synthesized via in-situ chemical oxidative method. Eur. Polym. J. 85, 236–243 (2016)CrossRefGoogle Scholar
  30. 30.
    H.R. Tantawy, B.-A.F. Kengne, D.N. McIlroy, T. Nguyen, D. Heo, Y. Qiang, D. Eric Aston, X-ray photoelectron spectroscopy analysis for the chemical impact of solvent addition rate on electromagnetic shielding effectiveness of HCl-doped polyaniline nanopowders. J. Appl. Phys. 118, 175501 (2015)CrossRefGoogle Scholar
  31. 31.
    G. Ren, H. Qiu, Q. Wu, H. Li, H. Fan, C. Fang, Thermal stability of composites containing HCl-doped polyaniline and Fe nanoparticles. Mater. Chem. Phys. 120, 127–133 (2010)CrossRefGoogle Scholar
  32. 32.
    M.G. Han, S.S. Im, X-ray photoelectron spectroscopy study of electrically conducting polyaniline/polyimide blends. Polymer 41, 3253–3262 (2000)CrossRefGoogle Scholar
  33. 33.
    H.R. Tantawy, D.E. Aston, J.R. Smith, J.L. Young, A comparison of electromagnetic shielding with polyaniline nanopowders produced in solvent-limited conditions. ACS Appl. Mater. Interfaces 5(11), 4648–4658 (2013)CrossRefGoogle Scholar
  34. 34.
    H.R. Tantawy, A.T. Weakley, D.E. Aston, Chemical effects of a solvent-limited approach to HCl-doped polyaniline nanopowder synthesis. J. Phys. Chem. C 118, 1294–1305 (2014)CrossRefGoogle Scholar
  35. 35.
    D. Thomas, A. Thomas, A.E. Tom, K.K. Sadasivuni, D. Ponnamma, S. Goutham, J.J. Cabibihan, K.V. Rao, Highly selective gas sensors from photo-activated ZnO/PANI thin films synthesized by mSILAR. Synth. Met. 232, 123–130 (2017)CrossRefGoogle Scholar
  36. 36.
    L. Wang, H. Huang, S. Xiao, D. Cai, Y. Liu, B. Liu, D. Wang, C. Wang, H. Li, Y. Wang, Q. Li, T. Wang, Enhanced sensitivity and stability of room-temperature NH3 sensors using core-shell CeO2 nanoparticles@cross-linked PANI with p–n heterojunctions. ACS Appl. Mater. Interfaces 6(16), 14131–14140 (2014)CrossRefGoogle Scholar
  37. 37.
    X.L. Huang, N.T. Hu, R.G. Gao, Y. Yu, Y.Y. Wang, Z. Yang, E.S. Kong, H. Wei, Y.F. Zhang, Reduced graphene oxide − polyaniline hybrid: preparation, characterization and its applications for ammonia gas sensing. J. Mater. Chem. 22, 22488–22495 (2012)CrossRefGoogle Scholar
  38. 38.
    Z. Wu, X. Chen, S. Zhu, Z. Zhou, Y. Yao, W. Quan, B. Liu, Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators B 178, 485–493 (2013)CrossRefGoogle Scholar
  39. 39.
    H. Tai, Y. Jiang, G. Xie, J. Yu, X. Chen, Fabrication and gas sensitivity of polyaniline − titanium dioxide nanocomposite thin film. Sens. Actuators B 125, 644–650 (2007)CrossRefGoogle Scholar
  40. 40.
    M. Das, D. Sarkar, One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor. Ceram. Int. 43, 11123–11131 (2017)CrossRefGoogle Scholar
  41. 41.
    S.T. Navale, A.T. Mane, M.A. Chougule, V.B. Patil, Highly sensitive, reproducible, selective and stable CSA-polypyrrole NO2 sensor. Synth. Met. 189, 111–118 (2014)CrossRefGoogle Scholar
  42. 42.
    A.G. Sonkusare, S. Tyagi, R. Kumar, S. Mishra, Room temperature ammonia gas sensing using polyaniline nanoparticles based sensor. Int. J. Mater. 12(2), 283–291 (2017)Google Scholar
  43. 43.
    A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Ammonia sensors based on sensitive polyaniline films. Sens. Actuators B 37(3), 135–140 (1996)CrossRefGoogle Scholar
  44. 44.
    S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian, R. Luo, A. Chen, D. Li, Polyaniline@SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature. Sens. Actuators B 226, 540–547 (2016)CrossRefGoogle Scholar
  45. 45.
    A. Mani, K. Athinarayanasamy, P. Kamaraj, S.T. Selvan, S. Ravichandran, K.L.N. Phani, S. Pitchumani, Crystalline order in polyaniline. Mater. Sci. Lett. 14(22), 1594–1596 (1995)CrossRefGoogle Scholar
  46. 46.
    S. Bai, Y. Zhao, J. Sun, Z. Tong, R. Luo, D. Li, A. Chen, Preparation of conducting films based on α-MoO3/PANI hybrids and their sensing properties to triethylamine at room temperature. Sens. Actuators B 239, 131–138 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Mahshahr BranchIslamic Azad University (I.A.U)MahshahrIran
  2. 2.Department of Physics, Masjed-Soleiman BranchIslamic Azad University (I.A.U)Masjed-SoleimanIran

Personalised recommendations