Skip to main content
Log in

Dielectric properties and surface potential decay characteristics of low density polyethylene/ZnO microvaristor composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper focuses on the effects of submicron ZnO microvaristors on the microstructure and electrical properties of low density polyethylene (LDPE) based composites. The submicron ZnO microvaristors are obtained by ball milling method and are used as a filler of LDPE based composites. The submicron composites with the filler loading of 0, 10, 20, 30 and 40 wt% are prepared by melt-blending method. The morphology, crystallization behavior, dielectric properties and surface potential decay characteristics are characterized by scanning electron microscope, differential scanning calorimetry, dielectric spectrum and surface potential decay measurement, respectively. Experimental results show that the average speed of the surface potential decay characteristics of LDPE based composites increases distinctly with the increasing filler loading. The submicron ZnO microvaristors are in favorable to suppress the charge accumulation of LDPE based composites and can be used to regulate the charge distribution in electrical and electronic equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G. Mazzanti, G.C. Montanari, L.A. Dissado, IEEE Trans. Dielectr. Electr. Insul. 12(5), 876 (2005)

    Article  Google Scholar 

  2. N. Zhao, Y. Nie, S. Li, J. Mater. Sci. Mater. Electron. 29(15), 12850 (2018)

    Article  CAS  Google Scholar 

  3. Y. Wang, C. Wang, W. Chen, K. Xiao, IEEE Trans. Dielectr. Electr. Insul. 23(3), 1713 (2016)

    Article  CAS  Google Scholar 

  4. F. Tian, Q. Lei, X. Wang, Y. Wang, Appl. Phys. Lett. 99(14), 142903 (2011)

    Article  Google Scholar 

  5. F. Tian, J. Zhang, X. Peng, C. Hou, IEEE Trans. Dielectr. Electr. Insul. 24(3), 1888 (2017)

    Article  CAS  Google Scholar 

  6. B. Du, Z. Li, Z. Yang, IEEE Trans. Dielectr. Electr. Insul. 23(5), 3108 (2016)

    Article  CAS  Google Scholar 

  7. J. Li, B. Du, X. Kong, Z. Li, IEEE Trans. Dielectr. Electr. Insul. 24(3), 1566 (2017)

    Article  CAS  Google Scholar 

  8. L. Donzel, F. Greuter, T. Christen, IEEE Electr. Insul. Mag. 27(2), 18 (2011)

    Article  Google Scholar 

  9. Y. Han, S. Li, D. Min, Sens. Mater. 29(8), 1159 (2017)

    CAS  Google Scholar 

  10. S. Li, J. Lin, J. He, W. Liu, J. Mater. Sci. Mater. Electron. 28(18), 13905 (2017)

    Article  CAS  Google Scholar 

  11. V. Shanmugam, K. Jeyaperumal, Appl. Surf. Sci. 449, 617 (2018)

    Article  CAS  Google Scholar 

  12. A. Hassanien, A. Akl, A. Saaedi, CrystEngComm 20, 1716 (2018)

    Article  CAS  Google Scholar 

  13. S. Ishibe, M. Mori, M. Kozako, M. Hikita, IEEE Trans. Power Del. 29(2), 677 (2014)

    Article  Google Scholar 

  14. S. Tiong, G. Liang, Mater. Chem. Phys. 100(1), 1 (2006)

    Article  Google Scholar 

  15. J. Hong, L. Schadler, R. Siegel, E. Martensson, Appl. Phys. Lett. 82(12), 1956 (2003)

    Article  CAS  Google Scholar 

  16. S.M. Lebedev, O.S. Gefle, A.E. Strizhkov, IEEE Trans. Dielectr. Electr. Insul. 20(1), 289 (2013)

    Article  CAS  Google Scholar 

  17. Y. Han, S. Li, D. Min, IEEE Trans. Dielectr. Electr. Insul. 24(5), 3154 (2017)

    Article  CAS  Google Scholar 

  18. S. Li, Y. Nie, W. Wang, L. Yang, D. Min, IEEE Trans. Dielectr. Electr. Insul. 23(5), 3215 (2016)

    Article  CAS  Google Scholar 

  19. J. Li, F. Zhou, D. Min, S. Li, R. Xia, IEEE Trans. Dielectr. Electr. Insul. 22(3), 1723 (2015)

    Article  CAS  Google Scholar 

  20. Y. Han, S. Li, D. Min, IEEE Trans. Dielectr. Electr. Insul. 25(2), 639 (2018)

    Article  CAS  Google Scholar 

  21. X. Huang, Q. Ke, C. Kim, H. Zhong, P. Wei, G. Wang, F. Liu, P. Jiang, Polym. Eng. Sci. 47(7), 1052 (2010)

    Article  Google Scholar 

  22. A. Tracz, I. Kucinska, D. Wojciechowska, J. Jeszka, Eur. Polym. J. 41(3), 501 (2005)

    Article  CAS  Google Scholar 

  23. T. Dollase, M. Wilhelm, H. Spiess, Y. Yagen, R. Rozen, M. Gottlieb, Interface Sci. 11(2), 199 (2003)

    Article  CAS  Google Scholar 

  24. S. Alapati, J.T. Meledath, A. Karmarkar, I.E.T. Sci, Meas. Technol. 8(2), 60 (2014)

    CAS  Google Scholar 

  25. S. Li, G. Yin, S. Bai, J. Li, IEEE Trans. Dielectr. Electr. Insul. 18(5), 1535 (2011)

    Article  CAS  Google Scholar 

  26. B. Zhang, W. Gao, P. Chu, Z. Zhang, G. Zhang, J. Mater. Sci. Mater. Electron. 29(3), 1964 (2018)

    Article  Google Scholar 

  27. T. Tanaka, IEEE Trans. Dielectr. Electr. Insul. 12(5), 914 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongsen Han.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Xia, Y., Suo, C. et al. Dielectric properties and surface potential decay characteristics of low density polyethylene/ZnO microvaristor composites. J Mater Sci: Mater Electron 30, 10644–10650 (2019). https://doi.org/10.1007/s10854-019-01410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01410-0

Navigation