Radiophotoluminescent organic materials based on photoswitchable fluorescent diarylethene derivatives

  • Kohei AsaiEmail author
  • Takashi Ubukata
  • Masanori KoshimizuEmail author
  • Yutaka Fujimoto
  • Takayuki Yanagida
  • Hiroki Kawamoto
  • Keisuke Asai


Photochromism refers to reversible changes in a material’s optical absorption and reflectance properties which are triggered by the absorption of a photon. This property can be useful in radiation imaging applications if such changes can be induced by ionizing radiation. The X-ray-induced isomerization of a photoswitchable fluorescent diarylethene-based material, 1,2-bis(2-methyl-6-phenyl-1-benzothiophen-1,1-dioxide-3-yl)perfluorocyclopentene (1a), was investigated with the aim of developing tissue equivalent imaging sensor materials. When 1a was irradiated with X-rays, the fluorescence intensity at 520 nm increased, which is consistent with isomerization processes. This work represents the first fabrication of an organic radiophotoluminescence material based on the photochromic molecule 1a. The resulting materials were sensitive to X-rays for doses in the range of 0.1–10 kGy and exhibited a linear, dose-dependent response.



This research was partially supported by a Japan Society for the Promotion of Science (Grant-in-Aid for Challenging Research (Exploratory) (No. 17K19082, 2017–2018)) and grants from Chubu Electric Power Co. Inc. and The Hitachi Global Foundation. A part of this research is based on the Cooperative Research Project of Research Center for Biomedical Engineering, Ministry of Education, Culture, Sports, Science and Technology.


  1. 1.
    S.W.S. McKeever (ed.), Thermoluminescence dosimetry materials: properties and uses (Nuclear Technology Publishing, Ashford, 1995)Google Scholar
  2. 2.
    E.G. Yukihara, S.W.S. McKeever, Phys. in Med. Biol. 53, R351 (2008)CrossRefGoogle Scholar
  3. 3.
    J.H. Schulman, R.J. Ginther, C.C. Klick, J. Appl. Phys. 22, 1479 (1951)CrossRefGoogle Scholar
  4. 4.
    H. Nanto et al., Sens. Mater. 29(10), 1439 (2017)Google Scholar
  5. 5.
    S.M. Hsu, S.H. Yeh, M.S. Lin, W.L. Chen, Radiat. Prot. Dosim. 119, 327 (2006)CrossRefGoogle Scholar
  6. 6.
    H. Tanaka, Y. Fujimoto, M. Koshimizu, T. Yanagida, T. Yahaba, K. Saeki, K. Asai, Radiat. Meas. 94, 73 (2016)CrossRefGoogle Scholar
  7. 7.
    D.F. Regulla, Health Phys. 22, 491 (1972)CrossRefGoogle Scholar
  8. 8.
    M.S. Akselrod, A.E. Akselrod, Radiat. Prot. Dosim. 119, 218 (2006)CrossRefGoogle Scholar
  9. 9.
    G. Okada, Y. Fujimoto, H. Tanaka, S. Kasap, T. Yanagida, J. Rare Earths 34, 769 (2016)CrossRefGoogle Scholar
  10. 10.
    K. Kinashi, Y. Miyamae, R. Nakamura, W. Sakai, N. Tsutsumi, H. Yamane, G. Hatsukano, M. Ozaki, K. Jimbo, T. Okabe, Chem. Commun. 51, 11170 (2015)CrossRefGoogle Scholar
  11. 11.
    H. Tsuchida, R. Nakamura, K. Kinashi, W. Sakai, N. Tsutsumi, M. Ozaki, M. Okabe, New J. Chem. 40, 8658 (2016)CrossRefGoogle Scholar
  12. 12.
    K. Asai, Y. Fujimoto, M. Koshimizu, K. Asai, Radiat. Meas. 106, 166 (2017)CrossRefGoogle Scholar
  13. 13.
    M. Irie, Chem. Rev. 100, 1685 (2000)CrossRefGoogle Scholar
  14. 14.
    Y. Yokoyama, Chem. Rev. 100, 1717 (2000)CrossRefGoogle Scholar
  15. 15.
    A. de Meijere, L. Zhao, V.N. Belov, M. Bossi, M. Noltemeyer, S.W. Hell, Chem. Eur. J. 13, 2503 (2007)CrossRefGoogle Scholar
  16. 16.
    T. Fukaminato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 133(13), 4984 (2011)CrossRefGoogle Scholar
  17. 17.
    A.G. Tatiana, V.K. Denis, C.N. Douglas, J. Org. Chem. 70, 5545 (2005)CrossRefGoogle Scholar
  18. 18.
    T. Fukaminato, T. Umemoto, Y. Iwata, S. Yokojima, M. Yoneyama, S. Nakamura, M. Irie, J. Am. Chem. Soc. 129, 5932 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Odo, T. Fukaminato, M. Irie, Chem. Lett. 36, 2 (2004)Google Scholar
  20. 20.
    S.J. van der Molen, J. Liao, T. Kudernac, J.S. Agustsson, L. Bernard, M. Calame, B.J. van Wees, B.L. Feringa, C. Schönenberger, Nano Lett. 9, 76 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Ikeda, N. Tanifuji, H. Yamaguchi, M. Irie, K. Matsuda, Chem. Commun. (2007). Google Scholar
  22. 22.
    A. Nurbawono, C. Zhang, Appl. Phys. Lett. 103, 203110 (2013)CrossRefGoogle Scholar
  23. 23.
    L. Oggioni, C. Toccafondi, G. Pariani, L. Colella, M. Canepa, C. Ber-tarelli, A. Bianco, Polymers. 9, 462 (2017)CrossRefGoogle Scholar
  24. 24.
    E. Kim, Y.K. Choi, M.H. Lee, Macromolecules 32, 4855 (1999)CrossRefGoogle Scholar
  25. 25.
    Y.C. Jeong, S.I. Yang, K.H. Ahn, E. Ki, Chem. Commun. (2005). Google Scholar
  26. 26.
    K. Uno, H. Niikura, M. Morimoto, Y. Ishibashi, H. Miyasaka, M. Irie, J. Am. Chem. Soc. 133, 13558 (2011)CrossRefGoogle Scholar
  27. 27.
    Y. Takagi, T. Kunishi, T. Katayama, Y. Ishibashi, H. Miyasaka, M. Morimoto, M. Irie, Photo-chem. Photobiol. Sci. 11, 1661 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kohei Asai
    • 1
    Email author
  • Takashi Ubukata
    • 2
  • Masanori Koshimizu
    • 1
    Email author
  • Yutaka Fujimoto
    • 1
  • Takayuki Yanagida
    • 3
  • Hiroki Kawamoto
    • 1
  • Keisuke Asai
    • 1
  1. 1.Department of Applied Chemistry, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Department of Advanced Materials Chemistry, Graduate School of EngineeringYokohama National UniversityYokohamaJapan
  3. 3.Nara Institute of Science and TechnologyIkomaJapan

Personalised recommendations