Advertisement

Low resistance metal contacts on MoS2 films deposited by laser physical vapor deposition

  • K. JagannadhamEmail author
Article
  • 34 Downloads

Abstract

Niobium doped MoS2 films were grown on sapphire and SiO2-p-Si substrates by laser physical vapor deposition at 600 °C. The nature of conductivity in MoS2 film on sapphire was found to be n-type while that in the film on SiO2-p-Si was p-type. Metal contacts with Al, Mo, Ta and Au were deposited by laser physical deposition on the MoS2 films. Applied current versus voltage measurements were made at room temperature. In addition, applied voltage versus current measurements were made as a function of temperature from 270 to 400 K. The two sets of measurements were used to determine the ideality factor, series resistance and Schottky barrier height for the four metal contacts. Lower resistance contacts were found to form with Ta and Mo for n-type films on sapphire and with Al and Mo for p-type films on SiO2-p-Si. The value of Schottky barrier height for the four metal films on SiO2-p-Si remained closer but differed for films on sapphire. The Schottky barrier height was found to increase with applied voltage indicating the influence of interface states and defects present in the films.

Notes

Supplementary material

10854_2019_1345_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1302 kb)

References

  1. 1.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136505 (2010)CrossRefGoogle Scholar
  2. 2.
    B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113, 3766 (2013)CrossRefGoogle Scholar
  4. 4.
    Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)CrossRefGoogle Scholar
  5. 5.
    C.D. English, G. Shine, V.E. Dorgan, K.C. Saraswat, E. Pop, Nano Lett. 16, 3824 (2016)CrossRefGoogle Scholar
  6. 6.
    J. Kang, W. Liu, K. Banerjee, Appl. Phys. Lett. 104, 093106 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Kaushik, A. Nipane, F. Basheer, S. Dubey, S. Grover, M.N. Deshmukh, S. Lodha, Appl. Phys. Lett. 105, 113505 (2014)CrossRefGoogle Scholar
  8. 8.
    G. Yoo, S. Lee, B. Yoo, C. Han, S. Kim, M.S. Oh, IEEE Electron Device Lett. 36, 1215 (2015)CrossRefGoogle Scholar
  9. 9.
    A.T. Neal, H. Liu, J.J. Gu and P.D. Ye. Metal contacts to MoS2: a two-dimensional semiconductor, 70th device research conference, IEEE, University Park, 18–20 June 2012.  https://doi.org/10.1109/drc.2012,6256928
  10. 10.
    S. Walla, S. Balendhran, Y. Wang, R.A. Kadir, A.S. Zoolfakar, P. Atkin, J.Z. Ou, S. Sriram, K. Kalantar-Zadeh, M. Bhaskaran, Appl. Phys. Lett. 103, 232105 (2013)CrossRefGoogle Scholar
  11. 11.
    S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2013)CrossRefGoogle Scholar
  12. 12.
    S.J. McDonnell, R.M. Wallace, Thin Solid Films 616, 482 (2016)CrossRefGoogle Scholar
  13. 13.
    P. Bampoulis, R.V. Bremen, Q. Yao, B. Poelsema, H.J.W. Zandvliet, K. Sotthewes, A.C.S. Appl, Mater. Interfaces 9, 19278 (2017)CrossRefGoogle Scholar
  14. 14.
    D. Liu, Y. Guo, L. Fang, J. Robertson, Appl. Phys. Lett. 103, 183113 (2015)CrossRefGoogle Scholar
  15. 15.
    S. McDonnel, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano 8, 2880 (2014)CrossRefGoogle Scholar
  16. 16.
    Y. Guo, D. Liu, J. Robertson, Appl. Phys. Lett. 106, 173106 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Addou, S. McDonnel, D. Barrera, Z. Guo, A. Azcatl, J. Wang, H. Zhu, C.L. Hinkle, M. Quevedo-Lopez, H.N. Alshareef, I. Colombo, J.W.P. Hsu, R.M. Wallace, ACS Nano 9, 9124 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Gong, L. Colombo, R.M. Wallace, K. Cho, Nano Lett. 14, 1714 (2014)CrossRefGoogle Scholar
  19. 19.
    C. Gong, C. Huang, J. Miller, L. Cheng, Y. Hao, D. Cobden, J. Kim, R.S. Ruoff, R.M. Wallace, K. Cho, ACS Nano 7, 11350 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Domask, R. Gurunathan, S. Mohney, J. Electron. Mater. 44, 4065 (2015)CrossRefGoogle Scholar
  21. 21.
    T.D. Durbin, J.R. Lince, J.A. Yarmoff, J. Vac. Sci. Technol. A 10, 2529 (1992)CrossRefGoogle Scholar
  22. 22.
    S. McDonnel, C. Smyth, C.L. Hinkle, R.M. Wallace, A.C.S. Appl, Mater. Interfaces 8, 8289 (2016)CrossRefGoogle Scholar
  23. 23.
    C.M. Smyth, R. Addou, S. McDonnel, C.L. Hinkle, R.M. Wallace, J. Phys. Chem. C 120, 14719 (2016)CrossRefGoogle Scholar
  24. 24.
    J.H. Werner, Appl. Phys. A 47, 291 (1988)CrossRefGoogle Scholar
  25. 25.
    S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)CrossRefGoogle Scholar
  26. 26.
    K. Jagannadham, K. Das, C.L. Reynolds Jr., N. El-Masry, J. Mat. Sci. Material in Electron. 29, 14180 (2018)CrossRefGoogle Scholar
  27. 27.
    P. Qin, G. Fang, W. Ke, F. Cheng, Q. Zheng, J. Wan, H. Lei, X. Zhao, J. Mat. Chem. 2, 2742 (2014)CrossRefGoogle Scholar
  28. 28.
    K. Dolui, I. Rungger, S. Sanvito, Phys. Rev. B 87, 165402 (2013)CrossRefGoogle Scholar
  29. 29.
    J. Suh, T.-E. Park, D.-Y. Lin, J. Park, H.J. Jung, Y. Chen, C. Ko, C. Jang, Y. Sun, R. Sinclair, J. Chang, S. Tongay, J. Wu, Nano Lett. 14, 6976 (2014)CrossRefGoogle Scholar
  30. 30.
    M.R. Laskar, D.N. Nath, L. Ma, E.W. Lee II, C.H. Lee, T. Kent, Z. Yang, R. Mishra, M.A. Roldan, J.-C. Idrobo, S.T. Panteldes, S.J. Pennycook, R.C. Meyers, Y. Wu, S. Rajan, Appl. Phys. Lett. 104, 092104 (2014)CrossRefGoogle Scholar
  31. 31.
    T.-E. Park, J. Suh, D. Seo, J. Park, D.-Y. Lin, Y.-S. Huang, H.-J. Choi, J. Wu, C. Jang, J. Chang, Appl. Phys. Lett. 107, 223107 (2015)CrossRefGoogle Scholar
  32. 32.
    C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, S. Ryu, ACS Nano 4, 2695 (2010)CrossRefGoogle Scholar
  33. 33.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  34. 34.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981), p. 262Google Scholar
  35. 35.
    W. Zhou, X. Zou, S. Najmaei, Z. Liu, Y. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, J.C. Idrobo, Nano Lett. 13, 2615 (2013)CrossRefGoogle Scholar
  36. 36.
    H.C. Card, E.H. Rhoderick, J. Phys. D 4, 1589 (1971)CrossRefGoogle Scholar
  37. 37.
    Y.-H. Lee, X.-Q. Zhang, W. Zhang, M.-T. Chang, C.-T. Lin, K.-D. Chang, Y.-C. Yu, J.T. Wang, C.-S. Chang, L.-J. Li, T.-W. Lin, Adv. Mat. 24, 2320 (2012)CrossRefGoogle Scholar
  38. 38.
    W. Zhu, T. Low, Y.-H. Lee, H. Wang, D.B. Farmer, J. Kong, F. Xia, P. Avouris, Nat. Comm. 5, 3087 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Materials Science and EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations