Advertisement

Some physical properties of nanostructured Al doped ZnO thin films synthesized by RF magnetron sputtering at room temperature

  • Volkan ŞenayEmail author
Original Article
  • 23 Downloads

Abstract

In this research, AZO thin films were deposited on glass substrates with 70 W, 100 W and 125 W RF powers at room temperature by RF magnetron sputtering technique. The structural, optical and surface properties of the produced thin films were investigated. According to the obtained results, the investigated thin films had a crystalline structure and they showed high transparency in the visible region. The increase of RF power produced thicker films. Relatively thicker AZO films produced with higher RF power exhibited greater number of interference fringes in the reflectance and transmittance spectra. The refractive index values of the film produced with 125 W RF power were considerably lower than those of the films produced with 70 W and 100 W due to the decreased packing density. The optical energy band gap values of the produced AZO thin films were higher than that of undoped ZnO films. This expansion resulted from the Burstein–Moss effect. However, the band gap energy value as well as the roughness of the film surface decreased like refractive index with an increase in RF power, especially after 100 W. As a result, the values corresponding to the optical and surface properties can be tuned and AZO thin films can be produced by RF magnetron sputtering technique as promising candidates for optoelectronic devices and transparent conductive oxide applications.

Notes

References

  1. 1.
    M. Fallah, M.-R. Zamani-Meymian, R. Rahimi, M. Rabbani, Appl. Surf. Sci. 316, 456 (2014)CrossRefGoogle Scholar
  2. 2.
    T. Gu, E.-T. Hu, S. Guo, et al., Vacuum 163, 69 (2019)CrossRefGoogle Scholar
  3. 3.
    D.K. Kima, H.B. Kimb, Appl. Sci. Converg. Technol. 23, 279 (2014)CrossRefGoogle Scholar
  4. 4.
    C. Guillén, J. Herrero, Thin Solid Films 520, 1 (2011)CrossRefGoogle Scholar
  5. 5.
    M.-C. Jun, S.-U. Park, J.-H. Koh, Nanoscale Res. Lett. 7, 1 (2012)CrossRefGoogle Scholar
  6. 6.
    A.A. Al-ghamdi, H. Alhumminay, M.S. Abdel-wahab, I. Yahia, Optik-Int. J. Light Electron Opt. 127(10), 4324–4328 (2016)CrossRefGoogle Scholar
  7. 7.
    T. Yang, S. Song, Y. Li et al., Physica B 407, 4518 (2012)CrossRefGoogle Scholar
  8. 8.
    C. Ma, X. Lu, B. Xu, et al., J. Alloys Compd. 774, 201 (2018)CrossRefGoogle Scholar
  9. 9.
    T.-C. Lin, W.-C. Huang, F.-C. Tsai, Thin Solid Films 589, 446 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.S. Jung, Y.S. Park, K.H. Kim, W.-J. Lee, Trans. Electr. Electr. Mater. 14, 9 (2013)CrossRefGoogle Scholar
  11. 11.
    W. Zhang, J. Gan, L. Li et al., Mater. Sci. Semicond. Process. 74, 147 (2018)CrossRefGoogle Scholar
  12. 12.
    A. Eshaghi, M. Hajkarimi, Optik-Int. J. Light Electron Opt. 125, 5746 (2014)CrossRefGoogle Scholar
  13. 13.
    P.-C. Yao, S.-T. Hang, M.-J. Wu, Trans. Can. Soc. Mech. Eng. 37, 303–312 (2013)CrossRefGoogle Scholar
  14. 14.
    C.-H. Chu, H.-W. Wu, J.-L. Huang, Ceram. Int. 42(5), 5754–5761 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Efafi, M.S. Ghamsari, M.M. Ara, J. Lumin. 154, 32 (2014)CrossRefGoogle Scholar
  16. 16.
    Y.-S. Liu, C.-Y. Hsieh, Y.-J. Wu et al., Appl. Surf. Sci. 282, 32 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Li, X. Zhu, Q. Xie, D. Yang, Ceram. Int. 45, 3871 (2019)CrossRefGoogle Scholar
  18. 18.
    J. Chen, Y. Sun, X. Lv et al., Appl. Surf. Sci. 317, 1000 (2014)CrossRefGoogle Scholar
  19. 19.
    P. Prepelita, V. Craciun, F. Garoi, A. Staicu, Appl. Surf. Sci. 352, 23 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Wu, C. Chu, Y. Chen, et al., in Proceedings of the International MultiConference of Engineers and Computer Scientists (IMECS), HongKong, 13–15 March 2013, vol. II (2013)Google Scholar
  21. 21.
    K. Sun, X. Tang, C. Yang, D. Jin, Ceram. Int. 44, 19597 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Landa-Cánovas, J. Santiso, F. Agulló-Rueda et al., Ceram. Int. 45, 6319 (2019)CrossRefGoogle Scholar
  23. 23.
    R. Chang, T. Li, C. Lin, Appl. Surf. Sci. 258, 3732 (2012)CrossRefGoogle Scholar
  24. 24.
    H. Park, S.Q. Hussain, S. Velumani et al., Mater. Sci. Semicond. Proc. 37, 29 (2015)CrossRefGoogle Scholar
  25. 25.
    A. Spadoni, M. Addonizio, Thin Solid Films 589, 514 (2015)CrossRefGoogle Scholar
  26. 26.
    A. Barhoumi, G. Leroy, B. Duponchel et al., Superlattices Microstruct. 82, 483 (2015)CrossRefGoogle Scholar
  27. 27.
    T. Ohgaki, Y. Kawamura, T. Kuroda, et al., Key Eng. Mater. Trans Tech. Publ. 248, 91 (2003)CrossRefGoogle Scholar
  28. 28.
    M.E. Fragala, G. Malandrino, M.M. Giangregorio et al., Chem. Vap. Depos. 15, 327 (2009)Google Scholar
  29. 29.
    M. Ohyama, H. Kozuka, T. Yoko, J. Am. Ceram. Soc. 81, 1622 (1998)CrossRefGoogle Scholar
  30. 30.
    A. Aktaruzzaman, G. Sharma, L. Malhotra, Thin Solid Films 198, 67 (1991)CrossRefGoogle Scholar
  31. 31.
    C. Weigand, R. Crisp, C. Ladam et al., Thin Solid Films 545, 124 (2013)CrossRefGoogle Scholar
  32. 32.
    A. Jilani, M.S. Abdel-wahab, A.A. Al-ghamdi, A. Sadik Dahlan, I. Yahia, Physica B 481, 97 (2016)CrossRefGoogle Scholar
  33. 33.
    M. Naddaf, M. Saad, Vacuum 122, 36 (2015)CrossRefGoogle Scholar
  34. 34.
    C. Guillen, J. Herrero, Vacuum 84, 924 (2010)CrossRefGoogle Scholar
  35. 35.
    J. Chang, H.-L. Wang, M.-H. Hon, J. Cryst. Growth 211, 93 (2000)CrossRefGoogle Scholar
  36. 36.
    L. Wen, B.B. Sahu, H.R. Kim, J.G. Han, Appl. Surf. Sci. 473, 649 (2019)CrossRefGoogle Scholar
  37. 37.
    K.H. Ri, Y. Wang, W.L. Zhou, J.X. Gao, X.J. Wang, J. Yu, Appl. Surf. Sci. 258, 1283 (2011)CrossRefGoogle Scholar
  38. 38.
    K.-W. Seo, H.-S. Shin, J.-H. Lee, K.-B. Chung, H.-K. Kim, Vacuum 101, 250 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Garcés, N. Budini, R. Arce, J. Schmidt, Thin Solid Films 574, 162 (2015)CrossRefGoogle Scholar
  40. 40.
    S. Rahmane, M.S. Aida, M.A. Djouadi, N. Barreau, Superlattices Microstruct. 79, 148 (2015)CrossRefGoogle Scholar
  41. 41.
    F. Wang, M. Wu, Y. Wang, Y. Yu, X. Wu, L. Zhuge, Vacuum 89, 127 (2013)CrossRefGoogle Scholar
  42. 42.
    W.-C. Huang, J.L. Chiu, X.D. Lin et al., Results Phys. 10, 132 (2018)CrossRefGoogle Scholar
  43. 43.
    J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, S.I. Hong, Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 015008 (2018)Google Scholar
  44. 44.
    S. Kumar, V. Mote, R. Prakash, V. Kumar, Mater. Focus 5, 545 (2016)CrossRefGoogle Scholar
  45. 45.
    X. Yong, F. Ping, Z. Baohua, G. Juan, Z. Lin, W. Xuehua, Mater. Lett. 123, 142 (2014)CrossRefGoogle Scholar
  46. 46.
    Q.H. Li, D. Zhu, W. Liu, Y. Liu, X.C. Ma, Appl. Surf. Sci. 254, 2922 (2008)CrossRefGoogle Scholar
  47. 47.
    B.C. Mohanty, D.H. Yeon, J.H. Yun, J.S. Cho, Y.S. Cho, Appl. Phys. A 115, 347 (2014)CrossRefGoogle Scholar
  48. 48.
    V. Şenay, S. Özen, S. Pat, Ş. Korkmaz, Mater. Focus 4, 397 (2015)CrossRefGoogle Scholar
  49. 49.
    J. Tauc, R. Grigorov, A. Vancu, Phys. Status Solidi 15, 627 (1966)CrossRefGoogle Scholar
  50. 50.
    N. Srinatha, Y. No, V.B. Kamble et al., RSC Adv. 6, 9779 (2016)CrossRefGoogle Scholar
  51. 51.
    Y.-H. Sun, C. H-l Wang, F.Liang Jian, W. Lei, Trans. Nonferrous Met. Soc. China 26, 1655 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of OpticianryBayburt UniversityBayburtTurkey

Personalised recommendations