Advertisement

(Al, Cu) Co-doped ZnS nanoparticles: structural, chemical, optical, and photocatalytic properties

  • B. PoornaprakashEmail author
  • U. Chalapathi
  • P. T. Poojitha
  • S. V. Prabhakar Vattikuti
  • M. Siva Pratap ReddyEmail author
Article
  • 36 Downloads

Abstract

The pristine and (Al, Cu) co-doped ZnS nanoparticles (NPs) were fabricated by a chemical refluxing approach at 100 °C for the first time. High resolution transmission electron microscopy images disclosed that the fabricated NPs were visually spheroid shaped. The X-ray diffraction and micro Raman spectroscopy results stipulated that (Al, Cu) co-doped ZnS NPs were effectively procured with zincblende structure without the existence of foreign phases. A reduction in the optical band gap was obtained in the ZnS NPs after (Al, Cu) co-doping. The photoluminescence (PL) of pristine ZnS was totally quenched through (Al, Cu) co-doping. Malachite green was degraded by using pristine and (Al, Cu) co-doped ZnS NPs under the simulated solar light illumination. Higher degradation efficiency was obtained through (Al, Cu) co-doped catalyst compared with the pristine ZnS catalyst. The (Al, Cu) co-doped ZnS NPs displayed the hydrogen production rate of 4994.7 m mol g−1 h−1 in 300 min under simulated solar light irradiation. Hence, (Al, Cu) co-doping is a novel and promising path to enrich the photocatalytic degradation and the hydrogen production of the pristine ZnS NPs.

Notes

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by Ministry of Education funded by the Ministry of Science, ICT and Fusion Research (2018R1D1A1B07040603) and BK21 Plus funded by the Ministry of Education (21A20131600011).

References

  1. 1.
    T. Dietl, H. Ohno, Rev. Mod. Phys. 86, 187 (2014)CrossRefGoogle Scholar
  2. 2.
    I.V. Martynenko, A.P. Litvin, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, Y.K. Gun’ko, J. Mater. Chem. B 5, 6701 (2017)CrossRefGoogle Scholar
  3. 3.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, Mater. Lett. 238, 159 (2019)CrossRefGoogle Scholar
  4. 4.
    H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, H. Ehrlich, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873 (2019)CrossRefGoogle Scholar
  5. 5.
    F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, J. Mater. Sci. Mater. Electron. 29(16), 13737 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci. Mater. Electron. 26(12), 9776 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci. Mater. Electron. 27(11), 11691 (2016)CrossRefGoogle Scholar
  8. 8.
    J. Zhang, Yu. J, Y. Zhang, Q. Li, J.R. Gong, Nano Lett. 11(11), 4774 (2011)CrossRefGoogle Scholar
  9. 9.
    Y. Hong, J. Zhang, X. Wang, Y. Wang, Z. Lin, Y. Jiaguo, F. Huang, Nanoscale 4, 2859 (2012)CrossRefGoogle Scholar
  10. 10.
    J. Zhang, Y. Wang, J. Zhang, Z. Lin, F. Huang, Y. Jiaguo, ACS Appl. Mater. Interfaces 5, 1031 (2013)CrossRefGoogle Scholar
  11. 11.
    P. Weide, K. Schulz, S. Kaluza, M. Rohe, R. Beranek, M. Muhler, Langmuir 32, 12641 (2016)CrossRefGoogle Scholar
  12. 12.
    G.-J. Lee, S. Anandan, S.J. Masten, J.J. Wu, Renew. Energy 89, 18 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Poornaprakash, U. Chalapathi, S.V.P. Vattikuti, M.C. Sekhar, B. Purusottam Reddy, P.T. Poojitha, M.S.P. Reddy, Y. Suh, S.H. Park, Ceram. Int. 45, 2289 (2019)CrossRefGoogle Scholar
  14. 14.
    B. Poornaprakash, U. Chalapathi, Y. Suh, S.P. Vattikuti, M.S.P. Reddy, S.H. Park, Ceram. Int. 44, 11724 (2018)CrossRefGoogle Scholar
  15. 15.
    G.-J. Lee, H.-C. Chen, J.J. Wu, Int. J. Hydrog. Energy 44(1), 110 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Kimi, L. Yuliati, M. Shamsuddin, J. Nanomater. 16(1), 195024 (2015)Google Scholar
  17. 17.
    B. Poornaprakash, U. Chalapathi, B. Purusottam Reddy, P.T. Poojitha, S.H. Park, J. Alloys Compd. 705, 51 (2017)CrossRefGoogle Scholar
  18. 18.
    B. Poornaprakash, P.T. Poojitha, U. Chalapathi, S. Ramu, R.P. Vijayalakshmi, S.H. Park, Ceram. Int. 42, 8092 (2016)CrossRefGoogle Scholar
  19. 19.
    B. Poornaprakash, S. Ramu, S.H. Park, R.P. Vijayalakshmi, B.K. Reddy, Mater. Lett. 164, 104 (2016)CrossRefGoogle Scholar
  20. 20.
    B. Poornaprakash, D. Amaranatha Reddy, G. Murali, N. Madhusudhana Rao, R.P. Vijayalakshmi, B.K. Reddy, J. Alloys Compd. 577, 79 (2013)CrossRefGoogle Scholar
  21. 21.
    B. Poornaprakash, S. Sambasivam, D. Amaranatha Reddy, G. Murali, R.P. Vijayalakshmi, B.K. Reddy, Ceram. Int. 40, 2677 (2014)CrossRefGoogle Scholar
  22. 22.
    N. Karar, F. Singh, B.R. Mehta, J. Appl. Phys. 95, 656 (2004)CrossRefGoogle Scholar
  23. 23.
    P.K. Ghosh, S.F. Ahmed, S. Jana, K.K. Chattopadhyay, Opt. Mater. 29, 1584 (2007)CrossRefGoogle Scholar
  24. 24.
    W.Q. Peng, G.W. Cong, S.C. Qu, Z.G. Wang, Opt. Mater. 29, 313 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • B. Poornaprakash
    • 1
    Email author
  • U. Chalapathi
    • 1
  • P. T. Poojitha
    • 2
  • S. V. Prabhakar Vattikuti
    • 3
  • M. Siva Pratap Reddy
    • 4
    Email author
  1. 1.Department of Electronic EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.Department of PhysicsSiddartha Educational Academy Group of InstitutionsTirupatiIndia
  3. 3.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  4. 4.School of Electronics EngineeringKyungpook National UniversityDaeguSouth Korea

Personalised recommendations