Advertisement

Construction of novel Cu2O/PbBiO2Br composites with enhanced photocatalytic activity

  • Yongmei Xia
  • Zuming HeEmail author
  • Jiangbin SuEmail author
  • Kejun Hu
Article
  • 30 Downloads

Abstract

In this work, novel Cu2O/PbBiO2Br heterojunction composites have been successfully prepared by hydrothermal method and oxidation–reduction process. The structure, morphology, optical and electronic properties of the as-prepared photocatalysts were investigated by various techniques. It is demonstrated that PbBiO2Br appears a smooth brick-like nanostructure and the average size is about 20–110 nm. The PbBiO2Br nano-bricks are dispersed on the surface of Cu2O particles to form Cu2O/PbBiO2Br p-n heterostructures. Compared with pure PbBiO2Br and Cu2O, the Cu2O/PbBiO2Br heterojunction composites exhibit enhanced photocatalytic performances for the degradation of crystal violet (CV) solution under visible-light irradiation. In particular, the 5%Cu2O/PbBiO2Br composite shows the optimal photocatalytic performance, and the degradation efficiency of CV reaches 96% in 50 min. The enhanced photocatalytic performance of the Cu2O/PbBiO2Br composites can be attributed to the significantly enhanced absorption in the visible range and efficient separation of photo-generated electron–hole pairs due to the formation of Cu2O/PbBiO2Br p-n heterostructures. Furthermore, the radical trapping experiments indicate that \(\cdot {\text{O}}_{2}^{ - }\) radicals and holes are the main active species during the decomposition process. Based on the experimental results and analyses, a possible photocatalytic mechanism of the Cu2O/PbBiO2Br composites is proposed. This study reveals that the Cu2O/PbBiO2Br composite photocatalysts could be applied in the wastewater purification.

Notes

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20181043) and the Specialized Research Fund for the Doctoral Program of Jiangsu University of Technology (KYY17011).

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    X.X. Zhao, H. Yang, Z.M. Cui, X.X. Wang, Z. Yi, Growth process and CQDs-modified Bi4Ti3O12 square plates with enhanced photocatalytic performance. Micromachines. 10, 66 (2019)CrossRefGoogle Scholar
  2. 2.
    Y.M. Xia, Z.M. He, J.B. Su, B. Tang, K.J. Hu, Y.L. Lu, S.P. Sun, X.P. Li, Fabrication of magnetically separable NiFe2O4/BiOI nanocomposites with enhanced photocatalytic performance under visible-light irradiation. RSC Adv. 8, 4284–4294 (2018)CrossRefGoogle Scholar
  3. 3.
    L. Di, H. Yang, T. Xian, X.Q. Liu, X.J. Chen, Photocatalytic and photo-Fenton catalytic degradation activities of Z-scheme Ag2S/BiFeO3 heterojunction composites under visible-light irradiation. Nanomaterials. 9, 399 (2019)CrossRefGoogle Scholar
  4. 4.
    H.J. Gao, H. Yang, S.F. Wang, Comparative study on optical and electrochemical properties of MFe2O4 (M = Mg, Ca, Ba) nanoparticles. Trans. Indian Ceram. Soc. 77, 1–11 (2018)CrossRefGoogle Scholar
  5. 5.
    S.D. Perera, R.G. Mariano, K. Vu, N. Nour, O. Seitz, Y. Chabal, K.J. Balkus, Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal. 2, 949–956 (2012)CrossRefGoogle Scholar
  6. 6.
    Y.M. Xia, Z.M. He, K.J. Hu, B. Tang, J.B. Su, Y. Liu, X.P. Li, Fabrication of n-SrTiO3/p-Cu2O heterojunction composites with enhanced photocatalytic performance. J. Alloys Compd. 753, 356–363 (2018)CrossRefGoogle Scholar
  7. 7.
    Z.M. He, B. Tang, J.B. Su, Y.M. Xia, Fabrication of novel Cu2O/Bi24O31Br 10 composites and excellent photocatalytic performance. J. Mater. Sci.: Mater. Electron. 29, 19544–19553 (2018)Google Scholar
  8. 8.
    Z. Geng, Y. Zhang, X. Yuan, M.X. Huo, Y.H. Zhao, Y. Lu, Y Qiu Incorporation of Cu2O nanocrystals into TiO2 photonic crystal for enhanced UV-visible light driven photocatalysis. J. Alloys Compd. 644, 734–741 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Wang, J. Di, G.P. Liu, S. Yin, J.X. Xia, Q. Zhang, H.M. Li, Novel mesoporous graphitic carbon nitride modified PbBiO2Br porous microspheres with enhanced photocatalytic performance. J. Colloid Interface Sci. 507, 310–322 (2017)CrossRefGoogle Scholar
  10. 10.
    X.J. Li, J. Wang, D. Xu, Z. Sun, Q. Zhao, W. Peng, Y. Li, G. Zhang, F. Zhang, X. Fan, NbSe2 nanosheet supported PbBiO2Br as a high performance photocatalyst for the visible light-driven asymmetric alkylation of aldehyde. ACS Sustain. Chem. Eng. 3, 1017–1022 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Füldner, P. Pohla, H. Bartling, S. Dankesreiter, R. Stadler, M. Gruber, A. Pfitzner, B. König, Selective photocatalytic reductions of nitrobenzene derivatives using PbBiO2X and blue light. Green Chem. 13, 640–643 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.L. Yu, S.L. Huang, Y. Gu, S. Yan, Z.J. Lan, W.J. Zheng, Y.A. Cao, Study of PbBiO2X (X = Cl, Br and I) square nanoplates with efficient visible photocatalytic performance. Appl. Surf. Sci. 428, 844–850 (2018)CrossRefGoogle Scholar
  13. 13.
    Y.M. Xia, Z.M. He, J.B. Su, K.J. Hu, APolyacrylamide gel synthesis and photocatalytic performanceof PbBiO2Br nanosheets. Mater. Lett. 241, 64–67 (2019)CrossRefGoogle Scholar
  14. 14.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P-25 graphene composite as a high performance photocatalyst. ACS Nano 4, 380–386 (2009)CrossRefGoogle Scholar
  15. 15.
    Z. Sun, J. Guo, S. Zhu, L. Mao, J. Ma, D. Zhang, A high performance Bi2WO6 graphene photocatalyst for visible light-induced H2 and O2 generation. Nanoscale. 6, 2186–2193 (2014)CrossRefGoogle Scholar
  16. 16.
    H.P. Lin, W.W. Lee, S.T. Huang, L.W. Chen, T.W. Yeh, J.Y. Fu, C.C. Chen, Controlled hydrothermal synthesis of PbBiO2Br/BiOBr heterojunction with enhanced visible-driven-light photocatalytic activities. J. Mol. Catal. A: Chem. 417, 168–183 (2016)CrossRefGoogle Scholar
  17. 17.
    B. Wang, J. Di, P.F. Zhang, J.X. Xia, S. Dai, H.M. Li, Ionic liquid-induced strategy for porous perovskite-like PbBiO2Br photocatalysts with enhanced photocatalytic activity and mechanism insight. Appl. Catal. B: Environ. 206, 127–135 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Guo, C.G. Niu, X.J. Wen, L. Zhang, G.M. Zeng, Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z scheme photocatalyst under visible light irradiation: performance and mechanism insight. J. Colloid Interface Sci. 513, 852–865 (2018)CrossRefGoogle Scholar
  19. 19.
    S.F. Li, X. Wang, Y.L. Xu, H.B. Yang, F.Y. Wei, X.T. Liu, The excellent photocatalytic synergism of PbBiO2Br/UiO-66-NH2 composites via multiple coupling effects. RSC Adv. 6, 89907–89915 (2016)CrossRefGoogle Scholar
  20. 20.
    Z.M. He, Y.M. Xia, B. Tang, X.F. Jiang, J.B. Su, Fabrication and photocatalytic property of ZnO/Cu2O core-shell nanocomposites. Mater. Lett. 184, 148–151 (2016)CrossRefGoogle Scholar
  21. 21.
    H.J. Gao, F. Wang, S.F. Wang, X.X. Wang, Z. Yi, H. Yang, Photocatalytic activity tuning in a novel Ag2S/CQDs/CuBi2O4 composite: synthesis and photocatalytic mechanism. Mater. Res. Bull. 115, 140–149 (2019)CrossRefGoogle Scholar
  22. 22.
    Y.M. Xia, Z.M. He, J.B. Su, Y. Liu, B. Tang, X.P. Li, Fabrication of novel n-SrTiO3/p-BiOI heterojunction for degradation of crystal violet under simulated solar light irradiation. Nano: Brief Rep. Rev. 6, 1850070 (2018)CrossRefGoogle Scholar
  23. 23.
    Y.M. Xia, Z.M. He, J.B. Su, B. Tang, Y. Liu, Enhanced photocatalytic performance of Z-scheme Cu2O/Bi5O7I nanocomposites. J. Mater. Sci.: Mater. Electron. 17, 15271–15281 (2018)Google Scholar
  24. 24.
    M. Mousavi, A.H. Yangjeh, Magnetically separable ternary g-C3N4/Fe3O4/BiOI nanocomposite Novel visible-light-driven photocatalysts based on graphitic carbon nitride. J. Colloid Interface Sci. 465, 83–92 (2016)CrossRefGoogle Scholar
  25. 25.
    X.X. Zhao, H. Yang, S.H. Li, Z.M. Cui, C.R. Zhang, Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity. Mater. Res. Bull. 107, 180–188 (2018)CrossRefGoogle Scholar
  26. 26.
    S.J. Zhang, J.F. Yang, Microwave-assisted synthesis of BiOCl/BiOBr composites with improved visible-light photocatalytic activity. Ind. Eng. Chem. Res. 54, 9913–9999 (2015)CrossRefGoogle Scholar
  27. 27.
    H.B. Yin, X.F. Chen, R.J. Hou, H.J. Zhu, S.Q. Li, Y.N. Huo, H.X. Li, Ag/BiOBr film in a rotating-disk reactor containing long-afterglow phosphor for round-the-clock photocatalysis. ACS Appl. Mater. Interfaces. 7, 20076–20082 (2015)CrossRefGoogle Scholar
  28. 28.
    X.X. Zhao, H. Yang, H.M. Zhang, Z.M. Cui, W.J. Feng, Surface-disorder-engineering-induced enhancement in the photocatalytic activity of Bi4Ti3O12 nanosheets. Desalination Water Treat. 145, 326–336 (2019)CrossRefGoogle Scholar
  29. 29.
    S.Y. Wang, H. Yang, X.X. Wang, W.J. Feng, Surface disorder engineering of flake-like Bi2WO6 crystals for enhanced photocatalytic activity. J. Electron. Mater. 48, 2067–2076 (2019)CrossRefGoogle Scholar
  30. 30.
    W. Sun, W.D. Sun, Y.J. Zhuo, Y. Chu, Facile synthesis of Cu2O nanocube/polycarbazole composites and their high visible-light photocatalytic properties. J. Solid State Chem. 184, 1638–1643 (2011)CrossRefGoogle Scholar
  31. 31.
    L. Liu, Y.H. Qi, J.S. Hu, Y.H. Lian, W.Q. Cui, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146–1154 (2015)CrossRefGoogle Scholar
  32. 32.
    S.M. Wang, Y. Guan, L.P. Wang, W. Zhao, H. He, J. Xiao, S.G. Yang, C. Sun, Fabrication of a novel bifunctional material of BiOI/Ag3VO4 with high adsorption-photocatalysis for efficient treatment of dye wastewater. Appl. Catal. B: Environ. 168–169, 448–457 (2015)CrossRefGoogle Scholar
  33. 33.
    Y.M. Xia, Z.M. He, W. Yang, B. Tang, Y.L. Lu, K.J. Hu, J.B. Su, X.P. Li, Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity. Mater. Res. Express 5, 025504 (2018)CrossRefGoogle Scholar
  34. 34.
    X.X. Zhao, H. Yang, R.S. Li, Z.M. Cui, X.Q. Liu, Synthesis of heterojunction photocatalysts composed of Ag2S quantum dots combined with Bi4Ti3O12 nanosheets for the degradation of dyes. Environ. Sci. Pollut. Res. 26, 5524–5538 (2019)CrossRefGoogle Scholar
  35. 35.
    L.J. Di, H. Yang, T. Xian, X.J. Chen, Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation. Micromachines 9, 613 (2018)CrossRefGoogle Scholar
  36. 36.
    S. Cui, G.Q. Shan, L.Y. Zhu, Solvothermal synthesis of I-deficient BiOI thin film with distinct photocatalytic activity and durability under simulated sunlight. Appl. Catal. B: Environ. 219, 249–258 (2017)CrossRefGoogle Scholar
  37. 37.
    X.J. Wen, C.G. Niu, L. Zhang, G.M. Zeng, Novel p-n heterojunction BiOI/CeO2 photocatalyst for wider spectrum visible-light photocatalytic degradation of refractory pollutants. Dalton Trans. 46, 4982–4993 (2017)CrossRefGoogle Scholar
  38. 38.
    J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Q. Zhang, Z.G. Chen, H.M. Li, Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B 183, 254–262 (2016)CrossRefGoogle Scholar
  39. 39.
    L.J. Di, H. Yang, T. Xian, X.J. Chen, Facile synthesis and enhanced visible-light photocatalytic activity of novel p-Ag3PO4/n-BiFeO3 heterojunction composites for dye degradation. Nanoscale Res. Lett. 13, 257 (2018)CrossRefGoogle Scholar
  40. 40.
    Y. Feng, J.C. Shen, Q.F. Cai, H. Yang, Q.H. Shen, The preparation and properties of a g-C3N4/AgBr nanocomposite photocatalyst based on protonation pretreatment. New J. Chem. 39, 1132–1138 (2015)CrossRefGoogle Scholar
  41. 41.
    S.F. Wang, H.J. Gao, Y. Wei, Y.W. Li, X.H. Yang, L.M. Fang, L. Lei, Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate. CrystEngComm 21, 263–277 (2019)CrossRefGoogle Scholar
  42. 42.
    Y.X. Yan, H. Yang, X.X. Zhao, H.M. Zhang, J.L. Jiang, A hydrothermal route to the synthesis of CaTiO3 nanocuboids using P25 as the titanium source. J. Electron. Mater. 47, 3045–3050 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EngineeringJiangsu University of TechnologyChangzhouChina
  2. 2.Huaide SchoolChangzhou UniversityJingjiangChina
  3. 3.School of Mathematics & PhysicsChangzhou UniversityChangzhouChina

Personalised recommendations