Surface morphology, electrochemical and electrical performances of ZnO thin films sensitized with Ag nanoparticles by UV irradiation

  • Congrong Wang
  • Zhengyu Yang
  • Jianguo LvEmail author
  • Qianqian Zhu
  • Jingwen Jiang
  • Min Zhao
  • Wenhao Wang
  • Xiaoshuang Chen


Pure zinc oxide and Ag/ZnO thin films were prepared via two step method. The crystal structure, topography, chemical composition and optical properties were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible (UV–Vis) spectrophotometer and laser micro-Raman spectrometer. XRD, FE-SEM and XPS results indicated that Ag nanoparticles were successfully deposited on the zinc oxide nanorods. Ag nanoparticles on the zinc oxide nanorods would extend the photoabsorption region and reduce the electron transition from CB to VB. The photoelectrochemical performances of ZnO thin film could be effectively enhanced by moderate Ag nanoparticles modification. Under sunlight illumination, the photocurrent of the Ag-0.5/ZnO electrode was about three times as large as that of the zinc oxide electrode. The charge transfer process for the Ag/ZnO electrode under sunlight illumination has been discussed. With the increase of Ag content, the resistivity of the sample decreases sharply.



This work was supported by National Natural Science Foundation of China (Nos. 51701001, 51102072, 51472003, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2017A924, KJ2017A002), Doctor Scientific Research Fund of Anhui University (No. J01001927), Youth Core Teacher Fund of Anhui University (No. J01005111) and Foundation of Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices Integration Anhui University (Nos. Y01008411, WRXH201703).


  1. 1.
    A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat. Mater. 4, 42–46 (2005)CrossRefGoogle Scholar
  2. 2.
    Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)CrossRefGoogle Scholar
  3. 3.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)CrossRefGoogle Scholar
  4. 4.
    M.H. Huang, S. Mao, H. Feick, H.Q. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, Room-temperature ultraviolet nanowire nanolasers. Cheminform 32, 1897 (2001)Google Scholar
  5. 5.
    Z.L. Wang, ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 64, 33–71 (2009)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, R. Shi, J. Lin, Y. Zhu, Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energy Environ. Sci. 4, 2922–2929 (2011)CrossRefGoogle Scholar
  7. 7.
    Y. Ning, Z. Zhang, F. Teng, X. Fang, Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14, 1703754 (2018)CrossRefGoogle Scholar
  8. 8.
    K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen, X. Fang, Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev. 11, 1600257 (2017)CrossRefGoogle Scholar
  9. 9.
    F. Teng, W. Ouyang, Y. Li, L. Zheng, X. Fang, Novel structure for high performance UV photodetector based on BiOCl/ZnO hybrid film. Small 13, 1700156 (2017)CrossRefGoogle Scholar
  10. 10.
    W. Ouyang, F. Teng, M. Jiang, X. Fang, ZnO film UV photodetector with enhanced performance: heterojunction with CdMoO4 microplates and the hot electrons injection effect of Au nanoparticles. Small 13, 1702177 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Feng, L. Zheng, H. Kai, H. Chen, Y. Li, Z. Zhang, X. Fang, A surface oxide thin layer of copper nanowires enhanced UV selective response of ZnO film photodetector. J. Mater. Chem. C 4, 8416–8421 (2016)CrossRefGoogle Scholar
  12. 12.
    Z. Zhang, Y. Ning, X. Fang, From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetectors. J. Mater. Chem. C 7, 223–229 (2019)CrossRefGoogle Scholar
  13. 13.
    S. Ruzgar, M. Caglar, The effect of Sn on electrical performance of zinc oxide based thin film transistor. J. Mater. Sci.: Mater. Electron. 30, 485–490 (2019)Google Scholar
  14. 14.
    M. Ghosh, M. Kurian, P. Veerender, N. Padma, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, Photovoltaic properties of ZnO nanoparticle based solid polymeric photoelectrochemical cells. AIP Conf. Proc. 1314, 394–396 (2010)CrossRefGoogle Scholar
  15. 15.
    H.E. Unalan, D. Wei, K. Suzuki, S. Dalal, P. Hiralal, H. Matsumoto, S. Imaizumi, M. Minagawa, A. Tanioka, A.J. Flewitt, Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116-2 (2008)CrossRefGoogle Scholar
  16. 16.
    K.S. Ahn, Y. Yan, S. Shet, K. Jones, T. Deutsch, J. Turner, M. Al-Jassim, ZnO nanocoral structures for photoelectrochemical cells. Appl. Phys. Lett. 93, 163117-3 (2008)Google Scholar
  17. 17.
    K. Keis, E. Magnusson, H. Lindström, S.E. Lindquist, A. Hagfeldt, A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes. Sol. Energy Mater. Sol. Cells 73, 51–58 (2002)CrossRefGoogle Scholar
  18. 18.
    Q. Yu, C. Cao, ZnO nanorod arrays for photoelectrochemical cells. J. Nanosci. Nanotechnol. 12, 3984–3989 (2012)CrossRefGoogle Scholar
  19. 19.
    Y. Qiu, K. Yan, H. Deng, S. Yang, Secondary branching and nitrogen doping of ZnO nanotetrapods: building a highly active network for photoelectrochemical water splitting. Nano Lett. 12, 407–413 (2012)CrossRefGoogle Scholar
  20. 20.
    S. Xie, X. Lu, T. Zhai, W. Li, M. Yu, C. Liang, Y. Tong, Enhanced photoactivity and stability of carbon and nitrogen co-treated ZnO nanorod arrays for photoelectrochemical water splitting. J. Mater. Chem. 22, 14272–14275 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Li, J. Li, C. Cui, Z. Liu, Y. Niu, PbS nanoparticle sensitized ZnO nanowire arrays to enhance photocurrent for water splitting. J. Phys. Chem. C 120, 4183–4188 (2016)CrossRefGoogle Scholar
  22. 22.
    B. Yang, J. Chen, L. Cui, W. Liu, Enhanced photocurrent of ZnO nanorods array sensitized with graphene quantum dots. RSC Adv. 5, 59204–59207 (2015)CrossRefGoogle Scholar
  23. 23.
    N.L. Tarwal, P.S. Patil, Enhanced photoelectrochemical performance of Ag–ZnO thin films synthesized by spray pyrolysis technique. Electrochim. Acta 56, 6510–6516 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Azarang, A. Shuhaimi, R. Yousefi, M. Sookhakian, Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J. Appl. Phys. 116, 084307-6 (2014)CrossRefGoogle Scholar
  25. 25.
    D. Chen, H. Zhang, S. Hu, Jinghong Li, Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO − TiO2 nanocomposites. J. Phys. Chem. C 112, 117–122 (2011)CrossRefGoogle Scholar
  26. 26.
    J. Tao, Z. Gong, G. Yao, Y. Cheng, M. Zhang, J. Lv, S. Shi, G. He, X. Jiang, X. Chen, Z. Sun, Enhanced optical and photocatalytic properties of Ag quantum dots-sensitized nanostructured TiO2/ZnO heterojunctions. J. Alloys Compd. 688, 605–612 (2016)CrossRefGoogle Scholar
  27. 27.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Facile synthesis of Ag/ZnO micro-flower and improved the ultraviolet and visible light photocatalytic activity. New J. Chem. 40, 1587–1594 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Zhao, Y. Cheng, J. Lv, Y. Zhang, W. Zhu, G. He, M. Zhang, X. Chen, Z. Sun, Effect of solution concentration on surface morphology, optical properties and solar light response of ZnO thin films. J. Mater. Sci.: Mater. Electron. 28, 2731–2738 (2016)Google Scholar
  29. 29.
    J. Lv, Q. Zhu, Z. Zeng, M. Zhang, J. Yang, M. Zhao, W. Wang, Y. Cheng, G. He, Z. Sun, Enhanced photocurrent and photocatalytic properties of porous ZnO thin film by Ag nanoparticles. J. Phys. Chem. Solids 111, 104–109 (2017)CrossRefGoogle Scholar
  30. 30.
    J. Tao, Z. Sun, Y. Cheng, Z. Miao, J. Lv, S. Shi, H. Gang, X. Jiang, X. Chen, X. Wang, Enhanced photoelectrochemical properties of nanocrystalline TiO2 electrode by surface sensitization with CuxO quantum dots. Sci. Rep. 7, 5291–5299 (2017)CrossRefGoogle Scholar
  31. 31.
    S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today 260, 126–134 (2016)CrossRefGoogle Scholar
  32. 32.
    R.S. Dhabbe, A.N. Kadam, M.B. Suwarnkar, M.R. Kokate, K.M. Garadkar, Enhancement in the photocatalytic activity of Ag loaded N-doped TiO2 nanocomposite under sunlight. J. Mater. Sci.: Mater. Electron. 25, 3179–3189 (2014)Google Scholar
  33. 33.
    Z. Tan, Z.H. Feng, L.P. Yu, Preparation and characterization of bowl-like porous ZnO film by electrodeposition using two-dimensional photonic crystal template. J. Mater. Sci.: Mater. Electron. 24, 2630–2635 (2013)Google Scholar
  34. 34.
    X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285–2287 (2001)CrossRefGoogle Scholar
  35. 35.
    S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag–ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2016)CrossRefGoogle Scholar
  36. 36.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, Facile synthesis of Ag/ZnO micro-flowers and their improved ultraviolet and visible light photocatalytic activity. Electrochim. Acta 40, 1587–1594 (2016)Google Scholar
  37. 37.
    M. Ahmad, E. Ahmed, Z.L. Hong, N.R. Khalid, W. Ahmed, A. Elhissi, Graphene–Ag/ZnO nanocomposites as high performance photocatalysts under visible light irradiation. J. Alloys Compd. 577, 717–727 (2013)CrossRefGoogle Scholar
  38. 38.
    G. Li, X. Chen, G. Gao, Bi2S3 microspheres grown on graphene sheets as low-cost counter-electrode materials for dye-sensitized solar cells. Nanoscale 6, 3283–3288 (2014)CrossRefGoogle Scholar
  39. 39.
    L. Yang, W. Wang, H. Zhang, S. Wang, M. Zhang, G. He, J. Lv, K. Zhu, Z. Sun, Electrodeposited Cu2O on the 101 facets of TiO2 nanosheet arrays and their enhanced photoelectrochemical performance. Sol. Energy Mater. Sol. Cells 165, 27–35 (2017)CrossRefGoogle Scholar
  40. 40.
    X. Cheng, H. Liu, Q. Chen, J. Li, P. Wang, Preparation and characterization of palladium nano-crystallite decorated TiO2 nano-tubes photoelectrode and its enhanced photocatalytic efficiency for degradation of diclofenac. J. Hazard. Mater. 254, 141–148 (2013)CrossRefGoogle Scholar
  41. 41.
    S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2013)CrossRefGoogle Scholar
  42. 42.
    C. Karunakaran, V. Rajeswari, P. Gomathisankar, Optical, electrical, photocatalytic, and bactericidal properties of microwave synthesized nanocrystalline Ag-ZnO and ZnO. Solid State Sci. 13, 923–928 (2011)CrossRefGoogle Scholar
  43. 43.
    L. Yang, M. Zhang, K. Zhu, J. Lv, G. He, Z. Sun, Electrodeposition of flake-like Cu2O on vertically aligned two-dimensional TiO2 nanosheet array films for enhanced photoelectrochemical properties. Appl. Surf. Sci. 391, 353–359 (2017)CrossRefGoogle Scholar
  44. 44.
    X. Yang, A. Wolcott, G. Wang, A. Sobo, R.C. Fitzmorris, F. Qian, J.Z. Zhang, Y. Li, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 9, 2331–2336 (2009)CrossRefGoogle Scholar
  45. 45.
    C.H. Hsu, C.H. Chen, D.H. Chen, Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting. J. Alloys Compd. 554, 45–50 (2013)CrossRefGoogle Scholar
  46. 46.
    G. Wang, X. Yang, F. Qian, J.Z. Zhang, Y. Li, Double-sided CdS and CdSe quantum dot co-sensitized ZnO nanowire arrays for photoelectrochemical hydrogen generation. Nano Lett. 10, 1088–1092 (2010)CrossRefGoogle Scholar
  47. 47.
    R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, ZnO/Ag nanocomposite: an efficient catalyst for degradation studies of textile effluents under visible light. Mater. Sci. Eng. C 33, 2235–2244 (2013)CrossRefGoogle Scholar
  48. 48.
    S.A. Ansari, M.M. Khan, J. Lee, M.H. Cho, Highly visible light active Ag@ZnO nanocomposites synthesized by gel-combustion route. J. Ind. Eng. Chem. 20, 1602–1607 (2014)CrossRefGoogle Scholar
  49. 49.
    Y. Zheng, C. Chen, Y. Zhan, X. Lin, Q. Zheng, K. Wei, J. Zhu, Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property. J. Phys. Chem. C 112, 10773–10777 (2008)CrossRefGoogle Scholar
  50. 50.
    K.M. Kang, Y.J. Choi, H. Kim, H.H. Park, Structural, electrical, and optical properties of photochemical metal-organic-deposited ZnO thin films incorporated with Ag nanoparticles and graphene. Afr. J. Food Sci. 4, 55–59 (2015)Google Scholar
  51. 51.
    D. Rui, Y. Zou, H. Tang, Correlation between electrical, optical properties and Ag2+ centers of ZnO: Ag thin films. Phys. B 403, 2004–2007 (2008)CrossRefGoogle Scholar
  52. 52.
    N. Najafi, S.M. Rozati, Resistivity reduction of nanostructured undoped zinc oxide thin films for Ag/ZnO bilayers using APCVD and sputtering techniques. Mater. Res.-Ibero-Am. J. Mater. 21, e20170933 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Congrong Wang
    • 1
  • Zhengyu Yang
    • 1
  • Jianguo Lv
    • 1
    • 2
    Email author
  • Qianqian Zhu
    • 1
  • Jingwen Jiang
    • 1
  • Min Zhao
    • 1
    • 2
  • Wenhao Wang
    • 1
  • Xiaoshuang Chen
    • 3
  1. 1.School of Physics and Materials EngineeringHefei Normal UniversityHefeiChina
  2. 2.Co-operative Innovation Research Center for Weak Signal-Detecting Materials and Devices IntegrationAnhui UniversityHefeiChina
  3. 3.National Laboratory for Infrared Physics, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations