Thermal conductive and dielectric properties of epoxy resin with bimetal filler of Zn–Cu particle

  • Tian ChenEmail author
  • Liwen Deng


In this study, novel Zn–Cu hybrid particles were prepared by a simple displacement reaction. In this displacement reaction Zn powder and CuSO4 aqueous solution were used as reactants. By adjusting the amount of Zn powder, Zn–Cu particles with different Zn:Cu weight ratio (2:1, 1:1, and 1:2) were prepared. Scanning electron microscopic images showed that these Zn–Cu particles had special flake-granule hybrid structure. Cu granules were attached onto the surface of Zn flakes. These Zn–Cu particles were used as conducting fillers in the epoxy (EP) matrix. Thermal conductive and dielectric performance of EP-matrix composites reinforced with different Zn–Cu fillers was investigated. Compared with the EP composites with pure Zn powder, the composites filled by Zn–Cu particles displayed higher thermal conductivity and dielectric constant. The Zn–Cu(1:2)/EP had a thermal conductivity of 0.5008 W m−1 K−1 and thermal diffusivity of 0.3158 mm2 s−1. The thermal conductivity enhancement value of the 20%Zn–Cu(1:2)/EP composite reached 137.9%. The dielectric constant of the 20%Zn–Cu(1:2)/EP at 1 Hz reached 34.56. In this study the thermal conductivity of the composites is mainly affected by the thermal conductivity of the fillers and the dielectric property is mainly affected by the filler shape.



This work was supported by Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the National Natural Science Foundation of China (51603102) and the China Postdoctoral Science Foundation (2018M630554).


  1. 1.
    Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, G.H. Hu, Fundamentals, processes and applications of high-permittivity polymer–matrix composites. Prog. Mater Sci. 57, 660–723 (2012)CrossRefGoogle Scholar
  2. 2.
    Z.M. Dang, M.S. Zheng, J.W. Zha, 1D/2D carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications. Small 12, 1688–1701 (2016)CrossRefGoogle Scholar
  3. 3.
    X.L. Zeng, J.J. Sun, Y.M. Yao, R. Sun, J.B. Xu, C.P. Wong, A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11, 5167–5178 (2017)CrossRefGoogle Scholar
  4. 4.
    J.T. Hu, Y. Huang, X.L. Zeng, Q. Li, L.L. Ren, R. Sun, J.B. Xu, C.P. Wong, Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 160, 127–137 (2018)CrossRefGoogle Scholar
  5. 5.
    X.T. Yang, Y.Q. Guo, X. Luo, N. Zheng, T.B. Ma, J.J. Tan, C.M. Li, Q.Y. Zhang, J.W. Gu, Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in situ polymerization. Compos. Sci. Technol. 164, 59–64 (2018)CrossRefGoogle Scholar
  6. 6.
    J.T. Hu, Y. Huang, Y.M. Yao, G.R. Pan, J.J. Sun, X.L. Zeng et al., Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl. Mater. Interfaces. 9, 13544–13553 (2017)CrossRefGoogle Scholar
  7. 7.
    J.W. Gu, Y.Q. Guo, X.T. Yang, C.B. Liang, W.C. Geng, L. Tang et al., Synergistic improvement of thermal conductivities of polyphenylene sulfide composites filled with boron nitride hybrid fillers. Compos. A 95, 267–273 (2017)CrossRefGoogle Scholar
  8. 8.
    L. Weng, H.B. Wang, X.R. Zhang, L.Z. Liu, H.X. Zhang, Preparation and properties of boron nitride/epoxy composites with high thermal conductivity and electrical insulation. J. Mater. Sci. 29, 14267–14276 (2018)Google Scholar
  9. 9.
    J.H. Wang, D. Zhao, X. Zou, L. Mao, L.Y. Shi, The exfoliation and functionalization of boron nitride nanosheets and their utilization in silicone composites with improved thermal conductivity. J. Mater. Sci. 28, 12984–12994 (2017)Google Scholar
  10. 10.
    R. Kumar, S.K. Nayak, S. Sahoo, B.P. Panda, S. Mohanty, S.K. Nayak, Study on thermal conductive epoxy adhesive based on adopting hexagonal boron nitride/graphite hybrids. J. Mater. Sci. 29, 16932–16938 (2018)Google Scholar
  11. 11.
    C. Pan, K.C. Kou, Q. Jia, Y. Zhang, Y.Q. Wang, G.L. Wu et al., Fabrication and characterization of micro-nano AlN co-filled PTFE composites with enhanced thermal conductivity: a morphology-promoted synergistic effect. J. Mater. Sci. 27, 11909–11916 (2016)Google Scholar
  12. 12.
    J.W. Gu, Q.Y. Zhang, J. Dang, J.P. Zhang, Z.Y. Yang, Thermal conductivity and mechanical properties of aluminum nitride filled linear low-density polyethylene composites. Polym. Eng. Sci. 49, 1030–1034 (2009)CrossRefGoogle Scholar
  13. 13.
    G.R. Pan, Y.M. Yao, X.L. Zeng, J.J. Sun, J.T. Hu, R. Sun et al., Learning from natural nacre: constructing layered polymer composites with high thermal conductivity. ACS Appl. Mater. Interfaces. 9, 33001–33010 (2017)CrossRefGoogle Scholar
  14. 14.
    Y.Z. Feng, J. Hu, Y. Xue, C.G. He, X.P. Zhou, X.L. Xie et al., Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al2O3 composites by incorporating polymeric flame retardant-functionalized graphene. J. Mater. Chem. A 5, 13544–13556 (2017)CrossRefGoogle Scholar
  15. 15.
    Y.M. Yao, X.L. Zeng, G.R. Pan, J.J. Sun, J.T. Hu, Y. Huang et al., Interfacial engineering of silicon carbide nanowire/cellulose microcrystal paper toward high thermal conductivity. ACS Appl. Mater. Interfaces. 8, 31248–31255 (2016)CrossRefGoogle Scholar
  16. 16.
    J.W. Gu, Y.Q. Guo, Z.Y. Lv, W.C. Geng, Q.Y. Zhang, Highly thermally conductive POSS-g-SiCp/UHMWPE composites with excellent dielectric properties and thermal stabilities. Compos. A 78, 95–101 (2015)CrossRefGoogle Scholar
  17. 17.
    J.W. Gu, X.T. Yang, Z.Y. Lv, N. Li, C.B. Liang, Q.Y. Zhang, Functionalized graphite nanoplatelets/epoxy resin nanocomposites with high thermal conductivity. Int. J. Heat Mass Transf. 92, 15–22 (2016)CrossRefGoogle Scholar
  18. 18.
    J. Sun, J. Zhang, Improvement of electrical properties and thermal conductivity of ethylene propylene diene monomer (EPDM)/barium titanate (BaTiO3) by carbon blacks and carbon fibers. J. Mater. Sci. 28, 5250–5261 (2017)Google Scholar
  19. 19.
    A.K. Singh, A. Parhi, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Aligned multi-walled carbon nanotubes (MWCNT) and vapor grown carbon fibers (VGCF) reinforced epoxy adhesive for thermal conductivity applications. J. Mater. Sci. 28, 17655–17674 (2017)Google Scholar
  20. 20.
    A.K. Singh, B.P. Panda, S. Mohanty, S.K. Nayak, M.K. Gupta, Study on metal decorated oxidized multiwalled carbon nanotube (MWCNT)—epoxy adhesive for thermal conductivity applications. J. Mater. Sci. 28, 8908–8920 (2017)Google Scholar
  21. 21.
    D.D. Yang, H.P. Xu, W. Yu, J.R. Wang, G.K. Jiang, Solution-processed Ni–CNTs filled ferroelectric P(VDF–TrFE) composites with improved dielectric properties and thermal conductivity. J. Mater. Sci. 29, 63–69 (2018)Google Scholar
  22. 22.
    H.Y. Zhang, Y.X. Lin, D.F. Zhang, W.G. Wang, Y.X. Xing, J. Lin et al., Graphene nanosheet/silicone composite with enhanced thermal conductivity and its application in heat dissipation of high-power light-emitting diodes. Curr. Appl. Phys. 16, 1695–1702 (2016)CrossRefGoogle Scholar
  23. 23.
    T. Chen, B. Liu, Improvement of thermal conductivities for silicone nanocomposite via incorporating poly(γ-methacryloxypropyltrimethoxy silane) grafted graphene fillers. Chem. Phys. Lett. 693, 121–126 (2018)CrossRefGoogle Scholar
  24. 24.
    Y.H. Zhao, Y.F. Zhang, S.L. Bai, High thermal conductivity of flexible polymer composites due to synergistic effect of multilayer graphene flakes and graphene foam. Compos. A 85, 148–155 (2016)CrossRefGoogle Scholar
  25. 25.
    W.Y. Zhou, Effect of coupling agents on the thermal conductivity of aluminumparticle/epoxy resin composite. J. Mater. Sci. 46, 3883–3889 (2011)CrossRefGoogle Scholar
  26. 26.
    W.Y. Zhou, J. Zuo, W.Y. Ren, Thermal conductivity and dielectric properties of Al/PVDF composites. Compos. A 43, 658–664 (2012)CrossRefGoogle Scholar
  27. 27.
    W.Y. Zhou, Z.J. Wang, L.N. Dong, X.Z. Sui, Q.G. Chen, Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos. A 79, 183–191 (2015)CrossRefGoogle Scholar
  28. 28.
    X. Zhang, Y. Ma, C. Zhao, W. Yang, High dielectric constant and low dielectric loss hybrid nanocomposites fabricated with ferroelectric polymer matrix and BaTiO3 nanofibers modified with perfluoroalkylsilane. Appl. Surf. Sci. 305, 531–538 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Thomas, K.T. Varughese, K. Dwarakanath, K.B.R. Varma, Dielectric properties of Poly(vinylidene fluoride)/CaCu3Ti4O12 composites. Compos. Sci. Technol. 70, 539–545 (2010)CrossRefGoogle Scholar
  30. 30.
    N. Jaitanong, R. Yimnirun, H.R. Zeng, G.R. Li, Q.R. Yin, A. Chaipanich, Piezoelectric properties of cement based/PVDF/PZT composites. Mater. Lett. 130, 146–149 (2014)CrossRefGoogle Scholar
  31. 31.
    T. Chen, Q.P. Tang, B.D. Wang, Y.C. Li, L. Liu, Dielectric and magnetic properties of poly (vinylidene fluoride) composites doped with pomegranate-like PPY@NiFe2O4 nanospheres. Mater. Lett. 159, 413–416 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Chen, B. Liu, Enhanced dielectric properties of poly(vinylidene fluoride) composite filled with polyaniline-iron core-shell nanocomposites. Mater. Lett. 210, 165–168 (2018)CrossRefGoogle Scholar
  33. 33.
    T. Chen, S. Wang, P.P. Shao, Enhanced dielectric performance of poly(vinylidene fluoride)-based composites filled with hexadecylphosphonic acid functionalized nanometals. J. Mater. Sci. 28, 9387–9394 (2017)Google Scholar
  34. 34.
    T. Chen, B. Liu, Graphene quantum dot-poly(vinylidene fluoride) composite for the preparation of asymmetric bilayer bending transducer. J. Mater. Sci. 29, 5206–5212 (2018)Google Scholar
  35. 35.
    T. Chen, J.H. Qiu, K.J. Zhu, J.H. Li, Insight into influence of conducting polymer functionalized graphene on electromechanical activity of polyurethane-based intelligent shape-changing composites. J. Mater. Sci. 26, 3730–3738 (2015)Google Scholar
  36. 36.
    T. Chen, Y.Z. Zhao, L.F. Pan, M.C. Lin, Insight into effect of hydrothermal preparation process of nanofillers on dielectric, creep and electromechanical performance of polyurethane dielectric elastomer/reduced graphene oxide composites. J. Mater. Sci. 26, 10164–10171 (2015)Google Scholar
  37. 37.
    R. Bhunia, S. Das, S. Dalui, S. Hussain, R. Paul, R. Bhar et al., Flexible nano-ZnO/polyvinylidene difluoride piezoelectric composite films as energy harvester. Appl. Phys. A 122, 637 (2016)CrossRefGoogle Scholar
  38. 38.
    N.A. Hoque, P. Thakur, N. Bala, A. Kool, S. Das, P.P. Ray, Tunable photoluminescence emissions and large dielectric constant of the electroactive poly(vinylidene fluoride-hexafluoropropylene) thin films modified with SnO2 nanoparticles. RSC Adv. 6, 29931–29943 (2016)CrossRefGoogle Scholar
  39. 39.
    N.X. Xu, L. Hu, Q.L. Zhang, X.R. Xiao, H. Yang, E.J. Yu, Significantly enhanced dielectric performance of poly(vinylidene fluoride-co-hexafluoropylene)-based composites filled with hierarchical flower-like TiO2 particles. ACS Appl. Mater. Interfaces. 7, 27373–27381 (2015)CrossRefGoogle Scholar
  40. 40.
    T. Chen, B. Liu, Enhanced dielectric performance of poly(vinylidene fluoride) composite filled with copper phthalocyanine-titanium dioxide ball milling hybrids. Mater. Lett. 209, 467–471 (2017)CrossRefGoogle Scholar
  41. 41.
    W. Yu, H.Q. Xie, L.Q. Yin, J.C. Zhao, L.G. Xia, L.F. Chen, Exceptionally high thermal conductivity of thermal grease: synergistic effects of graphene and alumina. Int. J. Therm. Sci. 91, 76–82 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Chen, Y.Y. Sun, J. Lin, X.Z. Du, G.S. Wei, S.J. He et al., Modeling and analysis of synergistic effect in thermal conductivity enhancement of polymer composites with hybrid filler. Int. J. Heat Mass Transfer 81, 457–464 (2015)CrossRefGoogle Scholar
  43. 43.
    M.Y. Yang, X.W. Wang, R.M. Wang, S.H. Qi, The fabrication and thermal conductivity of epoxy composites with 3D nanofillers of AgNWs@SiO2&GNPs. J. Mater. Sci. 28, 16141–16147 (2017)Google Scholar
  44. 44.
    Y.L. Su, Y.Q. Gu, S.N. Feng, Composites of NBCTO/MWCNTs/PVDF with high dielectric permittivity and low dielectric loss. J. Mater. Sci. 29, 2416–2420 (2018)Google Scholar
  45. 45.
    T. Chen, B. Liu, Dielectric properties of graphene quantum dot-cobalt ferrite-poly(vinylidene fluoride) ternary composites. Mater. Lett. 209, 163–166 (2017)CrossRefGoogle Scholar
  46. 46.
    Y. Agari, M. Tanaka, S. Nagai, Thermal conductivity of a polymer composite filled with mixtures of particles. J. Appl. Polym. Sci. 34, 1429–1437 (1987)CrossRefGoogle Scholar
  47. 47.
    Y. Li, X.Y. Huang, Z.W. Hu, P.K. Jiang, S.G. Li, T. Tanaka, Large dielectric constant and high thermal conductivity in poly(vinylidene fluoride)/barium titanate/silicon carbide three-phase nanocomposites. Appl. Mater. Interfaces 3, 4396–4403 (2011)CrossRefGoogle Scholar
  48. 48.
    L.Y. Xie, X.Y. Huang, P.K. Jiang, Y.H. Huang, K. Yang, Core@double-shell structured BaTiO3-polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. J. Phys. Chem. C 117, 22525–22537 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina

Personalised recommendations