Germanium oxide glass based metal-dielectric nanocomposites: fabrication and optical characterization: a review of new developments

  • L. R. P. KassabEmail author
  • M. M. Miranda
  • D. K. Kumada
  • L. Bontempo
  • D. M. da Silva
  • C. B. de Araújo


We review recent experimental results with germanate glasses containing rare-earth ions (RE) and silver nanoparticles (Ag-NPs) nucleated by appropriate heat-treatment of samples. In one study, the photoluminescence (PL) due to an infrared-to-visible frequency upconversion (UC) process was investigated in Bi2O3–GeO2 (BGO) glasses co-doped with ytterbium (Yb3+) and erbium (Er3+) ions when low concentration of AgNO3 was added to the starting glass composition. By exciting the samples at 980 nm, in resonance with the Yb3+ transition, we investigated the influence of the Ag-NPs on the UC process. The Er3+ PL was enhanced, up to 100%, due to the increased local-field sensed by the RE and to the efficient Yb3+ → Er3+ energy-transfer. In another set of experiments, we studied the behavior of BGO glasses containing thulium ions (Tm3+) and Ag-NPs. The role of energy-transfer from bismuth centers to Tm3+ was investigated. PL and relative gain enhancements of ≈ 56% and 500%, respectively, were observed due to the influence of Ag-NPs. Using a pump laser operating at 808 nm (6 W) and a probe laser at 1470 nm (0.6 mW) the relative gain measured at 1470 nm was 4.5 dB/cm. The results from the two sets of experiments indicate that Yb3+/Er3+ co-doped BGO glass with Ag-NPs is an efficient upconverter and Tm3+ doped BGO glass with Ag-NPs can be used as efficient optical amplifier in the short-wave infrared region.



We thank the financial support from the Brazilian Agencies: Conselho Nacional de Desenvolvimento Científico e Tecnológico - Grant: INCT/CNPq 465.763/2014 (Instituto de Fotônica), Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco - FACEPE: APQ 0409-1.05/17, and Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior (CAPES) - PROEX 534/2018, grant: 23038.003382/2018-39. This work was performed in the framework of the PRONEX- Center of Excellence Program. The Nanotechnology National Laboratory (LNNano) of the CNPEM-Campinas/Brazil, is also acknowledged for the TEM measurements.


  1. 1.
    C. B. de Araújo, L.R.P. Kassab, In Glass Nanocomposites—Synthesis, Properties and Applications, ed. by B. Karmakar, K. Radermann, A.L. Stepanov. Micro & Nano Technologies Series, Chapter 5 (Elsevier, Amsterdam, 2016) pp. 131–144Google Scholar
  2. 2.
    M.E. Camilo, T.A.A. Assumpção, D.M. da Silva, D.S. da Silva, L.R.P. Kassab, C.B. de Araújo, Appl. Phys. B: Lasers and Optics 113, 153507 (2013)CrossRefGoogle Scholar
  3. 3.
    J.M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. de Boni, Opt. Mater. 36, 829 (2014)CrossRefGoogle Scholar
  4. 4.
    L. De Boni, E.C. Barbano, T.A. de Assumpção, L. Misoguti, L.R.P. Kassab, S.C. Zilio, Opt. Express 20, 6844 (2012)CrossRefGoogle Scholar
  5. 5.
    T.A.A. Assumpção, M.E. Camilo, M.I. Alayo, D.M. da Silva, L.R.P. Kassab, Opt. Mater. 72, 518 (2017)CrossRefGoogle Scholar
  6. 6.
    F.A. Bomfim, R.C. Rangel, D.M. da Silva, D.O. Carvalho, E.G. Melo, M.I. Alayo, L.R.P. Kassab, Opt. Mater. 86, 433 (2018)CrossRefGoogle Scholar
  7. 7.
    D.M. da Silva, L.R.P. Kassab, A.L. Siarkowski, C.B. de Araújo, Opt. Express 22, 16424 (2014)CrossRefGoogle Scholar
  8. 8.
    M.E. Camilo, E.O. Silva, L.R.P. Kassab, J.A.M. Garcia, C.B. de Araújo, J. Alloys Compd. 644, 155 (2015)CrossRefGoogle Scholar
  9. 9.
    L.R.P. Kassab, D.M. da Silva, J.A.M. Garcia, D.S. da Silva, C.B. de Araújo, Opt. Mater. 60, 25 (2016)CrossRefGoogle Scholar
  10. 10.
    L.R.P. Kassab, D.S. da Silva, R. de Almeida, C.B. de Araújo, Appl. Phys. Lett. 94, 101912 (2009)CrossRefGoogle Scholar
  11. 11.
    D.S. da Silva, L.P. Naranjo, L.R.P. Kassab, C.B. de Araújo, Appl. Phys. B 106, 1015 (2012)CrossRefGoogle Scholar
  12. 12.
    T.R. Oliveira, E.L. Falcão-Filho, C.B. de Araújo, D.S. da Silva, L.R.P. Kassab, D.M. da Silva, J. Appl. Phys. 114, 073503 (2013)CrossRefGoogle Scholar
  13. 13.
    M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. de Boni, Opt. Mater. 36, 829 (2014)CrossRefGoogle Scholar
  14. 14.
    M.M. Martins, D.S. da Silva, L.R.P. Kassab, S.J.L. Ribeiro, C.B. de Araújo, J. Braz. Chem. Soc. 26, 2520 (2015)Google Scholar
  15. 15.
    L.R.P. Kassab, D.K. Kumada, D.M. da Silva, J.A.M. Garcia, J. Non-Cryst, Solids 498, 395 (2018)Google Scholar
  16. 16.
    D.M. da Silva, L.R.P. Kassab, S.R. Luthi, C.B. de Araújo, A.S.L. Gomes, M.J.V. Bell, Appl. Phys. Lett. 90, 081913 (2007)CrossRefGoogle Scholar
  17. 17.
    L.R.P. Kassab, F.A. Bomfim, J.R. Martinelli, N.U. Wetter, J.J. Neto, C.B. de Araújo, Appl. Phys. B 94, 239 (2009)CrossRefGoogle Scholar
  18. 18.
    M.A. Hughes, T. Akada, T. Suzuki, Y. Ohishi, D.W. Hewak, Opt. Express 17, 19345 (2009)CrossRefGoogle Scholar
  19. 19.
    M. Hughes, T. Suzuki, Y. Ohishi, J. Opt. Soc. Am. B 25, 1380 (2008)CrossRefGoogle Scholar
  20. 20.
    X.-G. Meng, J.-R. Qiu, M.-Y. Peng, D.-P. Chen, Q.-Z. Zhao, X.-W. Jiang, C.-S. Zhu, Opt. Express 13, 1635 (2005)CrossRefGoogle Scholar
  21. 21.
    H.T. Sun, J.J. Zhou, J.R. Qiu, Prog. Mater Sci. 64, 1 (2014)CrossRefGoogle Scholar
  22. 22.
    J. Ren, B. Wu, X. Jiang, H. Dong, H. Zeng, J. Qin, Appl. Phys. B 88, 363 (2007)CrossRefGoogle Scholar
  23. 23.
    J. Ren, H. Dong, H. Zeng, H. Hu, C. Zhu, J. Qin, IEEE Photonics Technol. Lett. 19, 1395 (2007)CrossRefGoogle Scholar
  24. 24.
    C.M. Dianov, V.V. Dvoyrin, V.M. Mashinsky, A.A. Umnikvov, M.V. Yaskov, A.N. Guryanov, Quantum Electron. 35, 1083 (2005)CrossRefGoogle Scholar
  25. 25.
    Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, S. Khonton, Appl. Phys. Lett. 90, 261110 (2007)CrossRefGoogle Scholar
  26. 26.
    J. Ruan, G.P. Dong, X.F. Liu, Q. Zhang, D.P. Chen, J.R. Qiu, Opt. Lett. 34, 2486 (2009)CrossRefGoogle Scholar
  27. 27.
    B. Zhou, H. Lin, B. Chen, E.Y. Pun, Opt. Express 19, 6514 (2011)CrossRefGoogle Scholar
  28. 28.
    Q. Yan, C. Shen, W. Wang, S. Wang, G. Chen, J. Am. Ceram. Soc. 93, 3539 (2010)CrossRefGoogle Scholar
  29. 29.
    W.C. Wang, J. Yuan, D.D. Chen, Q. Qian, Q.Y. Zhang, Opt. Mater. Express 5, 1250 (2015)CrossRefGoogle Scholar
  30. 30.
    T.M. Hau, R. Wang, D. Zhou, X. Yu, Z. Song, Z. Yang, Y. Yang, X. He, J. Qiu, J. Lumin. 132, 1353 (2012)CrossRefGoogle Scholar
  31. 31.
    M.M. Martins, L.R.P. Kassab, D.M. da Silva, C.B. de Araújo, J. Alloys Compd. 772, 58 (2018)CrossRefGoogle Scholar
  32. 32.
    J.A. Jimenez, S. Lysenko, M. Sendova, C.Q. Zhao, Opt. Mater. 46, 88 (2015)CrossRefGoogle Scholar
  33. 33.
    A. Pillonnet, A. Berthelot, A. Pereira, O. Benamara, S. Derom, G.C. des Francs, A.M. Jurdyc, Appl. Phys. Lett. 100, 153115 (2012)CrossRefGoogle Scholar
  34. 34.
    L.R.P. Kassab, C.B. de Araújo, Metal dielectric nanocomposites based on germanate and tellurite glasses, Chapter 1. In Metal Nanostructures for Photonics, ed. by L.R.P. Kassab, C.B. de Araújo (Elsevier, Amsterdam, 2018), pp. 3–18Google Scholar
  35. 35.
    M. de Jong, A. Meijerink, R.A. Gordon, Z. Barandiar, L. Seijo, J. Phys. Chem. C 118, 9696 (2014)CrossRefGoogle Scholar
  36. 36.
    V.G. Truong, L. Bigot, A. Lerouge, M. Douay, Appl. Phys. Lett. 92, 041908 (2008)CrossRefGoogle Scholar
  37. 37.
    X. Guo, H.J. Li, L.B. Su, P.S. Yu, H.Y. Zhao, J.F. Liu, J. Xu, Laser Phys. 21, 901 (2011)CrossRefGoogle Scholar
  38. 38.
    D. Yang, J. Zhang, E.Y.-B. Pun, H. Lin, J. Appl. Phys. 108, 116101 (2010)CrossRefGoogle Scholar
  39. 39.
    D.L. Yang, E.Y.B. Pun, B.J. Chen, H. Lin, J. Opt. Soc. Am. B 26, 357 (2009)CrossRefGoogle Scholar
  40. 40.
    D.O. Carvalho, L.R.P. Kassab, V.D. Del Cacho, D.M. da Silva, M.I. Alayo, J. Lumin. 203, 135 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • L. R. P. Kassab
    • 1
    Email author
  • M. M. Miranda
    • 2
  • D. K. Kumada
    • 2
  • L. Bontempo
    • 1
    • 2
  • D. M. da Silva
    • 1
  • C. B. de Araújo
    • 3
  1. 1.Faculdade de Tecnologia de São PauloCEETEPSSão PauloBrazil
  2. 2.Departamento de Engenharia de Sistemas EletrônicosEscola Politécnica da USPSão PauloBrazil
  3. 3.Departamento de FísicaUniversidade Federal de PernambucoRecifeBrazil

Personalised recommendations