Advertisement

Epitaxial growth of (111) BaTiO3 thin films on (0002) GaN substrates with SrTiO3/TiN buffer layers

  • Shasha Jia
  • Xiaomin LiEmail author
  • Guanjie Li
  • Sijie Xie
  • Yongbo Chen
Article
  • 8 Downloads

Abstract

High-quality perovskite (111) BaTiO3 (BTO) ferroelectric thin films were epitaxially grown on wurtzite (0002) GaN substrates with the rationally designed SrTiO3 (STO)/TiN buffer layers by pulsed laser deposition. Particularly, TiN thin films with excellent conductivity could also be served as the bottom electrodes. The epitaxial relationship of the BTO/STO/TiN/GaN heterostructures was proved to be (111)[1\(\bar{1}\)0] BTO//(111)[1\(\bar{1}\)0] STO//(111)[1\(\bar{1}\)0] TiN//(0002)[11\(\bar{2}\)0] GaN by reflection high-energy electron diffraction and high resolution X-ray diffraction. Furthermore, the detailed interface structure and epitaxial relationship of the BTO/STO/TiN/GaN heterostructures were identified on atomic scale by high resolution transmission electron microscopy. The epitaxial (111) BTO ferroelectric thin films on GaN substrates exhibited the favorable ferroelectric properties with the remnant polarization of 12.97 μC cm−2. The high-quality epitaxial integration of perovskite BTO thin films on wurtzite GaN substrates could promote the potential applications in the advanced GaN-based integrated ferroelectric devices.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China Grant (Nos. 51572280 and 51602329), the National Key Research and Development Program of China (2016YFA0201103), and the Science Foundation for Youth Scholar of State Key Laboratory of High Performance Ceramics and Superfine Microstructures (No. SKL201603).

Compliance with ethical standards

Conflicts of interests

The authors declare that they have no conflicts of interest.

Supplementary material

10854_2019_1310_MOESM1_ESM.docx (74 kb)
Supplementary material 1 (DOCX 74 kb)

References

  1. 1.
    S.R. Singamaneni, J.T. Prater, J. Narayan, Appl. Phys. Rev. 3, 031301 (2016)CrossRefGoogle Scholar
  2. 2.
    S.H. Baek, C.B. Eom, Acta Mater. 61, 2734 (2013)CrossRefGoogle Scholar
  3. 3.
    L. Mazet, S.M. Yang, S.V. Kalinin, S. Schamm-Chardon, C. Dubourdieu, Sci. Technol. Adv. Mat. 16, 036005 (2015)CrossRefGoogle Scholar
  4. 4.
    H. Wu, S. Lu, T. Aoki, P. Ponath, J.G. Ekerdt, A.A. Demkov, M.R. McCartney, D.J. Smith, Appl. Phys. Lett. 110, 252901 (2017)CrossRefGoogle Scholar
  5. 5.
    D. Huang, Y. Wu, J.Y. Miao, Z.F. Liu, Y.X. Li, J. Inorg. Mater. 32, 219 (2017)CrossRefGoogle Scholar
  6. 6.
    K.J. Kormondy, Y. Popoff, M. Sousa, F. Eltes, D. Caimi, M.D. Rossell, M. Fiebig, P. Hoffmann, C. Marchiori, M. Reinke, M. Trassin, A.A. Demkov, J. Fompeyrine, S. Abel, Nanotechnology 28, 075706 (2017)CrossRefGoogle Scholar
  7. 7.
    J. He, H.Q. Jiang, J.C. Jiang, E.I. Meletis, J. Mater. Sci. 47, 2763 (2011)CrossRefGoogle Scholar
  8. 8.
    M.B. Lee, M. Kawasaki, M. Yoshimoto, H. Koinuma, Appl. Phys. Lett. 66, 1331 (1995)CrossRefGoogle Scholar
  9. 9.
    M. Scigaj, N. Dix, I. Fina, R. Bachelet, B. Warot-Fonrose, J. Fontcuberta, F. Sánchez, Appl. Phys. Lett. 102, 112905 (2013)CrossRefGoogle Scholar
  10. 10.
    L. Mazet, R. Bachelet, L. Louahadj, D. Albertini, B. Gautier, R. Cours, S. Schamm-Chardon, G. Saint-Girons, C. Dubourdieu, J. Appl. Phys. 116, 214102 (2014)CrossRefGoogle Scholar
  11. 11.
    M. Scigaj, C.H. Chao, J. Gázquez, I. Fina, R. Moalla, G. Saint-Girons, M.F. Chisholm, G. Herranz, J. Fontcuberta, R. Bachelet, F. Sánchez, Appl. Phys. Lett. 109, 122903 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Trivedi, K. Shenai, J. Appl. Phys. 85, 6889 (1999)CrossRefGoogle Scholar
  13. 13.
    A.K. Bilgili, Ö. Akpinar, G. Kurtulus, M.K. Ozturk, S. Ozcelik, E. Ozbay, J. Mater. Sci. 29, 12373 (2018)Google Scholar
  14. 14.
    W.H. Chang, C.H. Lee, Y.C. Chang, P. Chang, M.L. Huang, Y.J. Lee, C.H. Hsu, J.M. Hong, C.C. Tsai, J.R. Kwo, M. Hong, Adv. Mater. 21, 4970 (2009)CrossRefGoogle Scholar
  15. 15.
    M.D. Losego, L.F. Kourkoutis, S. Mita, H.S. Craft, D.A. Muller, R. Collazo, Z. Sitar, J.P. Maria, J. Cryst. Growth 311, 1106 (2009)CrossRefGoogle Scholar
  16. 16.
    C.R. Cho, J.Y. Hwang, J.P. Kim, S.Y. Jeong, S.G. Yoon, W.J. Lee, Jpn. J. Appl. Phys. 43, L1425 (2004)CrossRefGoogle Scholar
  17. 17.
    G.J. Li, X.M. Li, Z.J. Bi, Y.B. Chen, X.K. Xu, Mater. Lett. 216, 224 (2018)CrossRefGoogle Scholar
  18. 18.
    S. Gautier, P. Komninou, P. Patsalas, T. Kehagias, S. Logothetidis, C.A. Dimitriadis, G. Nouet, Semicond. Sci. Technol. 18, 594 (2003)CrossRefGoogle Scholar
  19. 19.
    S.R. Singamaneni, S. Punugupati, J.T. Prater, F. Hunte, J. Narayan, J. Appl. Phys. 116, 094103 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Narayan, P. Tiwari, X. Chen, J. Singh, R. Chowdhury, T. Zheleva, Appl. Phys. Lett. 61, 1290 (1992)CrossRefGoogle Scholar
  21. 21.
    P. Prieto, J.F. Marco, J.E. Prieto, S. Ruiz-Gomez, L. Perez, R.P. del Real, M. Vázquez, J. de la Figuera, Appl. Surf. Sci. 436, 1067 (2018)CrossRefGoogle Scholar
  22. 22.
    Y. Zhu, F. Li, R. Huang, T. Liu, Y. Zhao, Y. Shen, J. Zhang, A. Dingsun, Y. Guo, J. Vac. Sci. Technol. A 36, 041501 (2018)CrossRefGoogle Scholar
  23. 23.
    P. Patsalas, N. Kalfagiannis, S. Kassavetis, Materials 8, 3128 (2015)CrossRefGoogle Scholar
  24. 24.
    S. Abel, T. Stoferle, C. Marchiori, C. Rossel, M.D. Rossell, R. Erni, D. Caimi, M. Sousa, A. Chelnokov, B.J. Offrein, J. Fompeyrine, Nat. Commun. 4, 1671 (2013)CrossRefGoogle Scholar
  25. 25.
    T. Shimizu, D. Suwama, H. Taniguchi, T. Taniyama, M. Itoh, Appl. Phys. Expr. 6, 015803 (2013)CrossRefGoogle Scholar
  26. 26.
    R. Contreras-Guerrero, J.P. Veazey, J. Levy, R. Droopad, Appl. Phys. Lett. 102, 012907 (2013)CrossRefGoogle Scholar
  27. 27.
    Q. Qiao, Y. Zhang, R. Contreras-Guerrero, R. Droopad, S.T. Pantelides, S.J. Pennycook, S. Ogut, R.F. Klie, Appl. Phys. Lett. 107, 201604 (2015)CrossRefGoogle Scholar
  28. 28.
    P. Singh, P.K. Rout, H. Pandey, A. Dogra, J. Mater. Sci. 53, 4806 (2017)CrossRefGoogle Scholar
  29. 29.
    W. Zhang, J. Ouyang, L.M. Kang, H.B. Cheng, Q. Yang, F.R. Hu, J. Mater. Sci. 26, 9962 (2015)Google Scholar
  30. 30.
    W. Tian, V. Vaithyanathan, D.G. Schlom, Q. Zhan, S.Y. Yang, Y.H. Chu, R. Ramesh, Appl. Phys. Lett. 90, 172908 (2007)CrossRefGoogle Scholar
  31. 31.
    W.B. Luo, J. Zhu, H. Chen, X.P. Wang, Y. Zhang, Y.R. Li, J. Appl. Phys. 106, 104120 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institute of Ceramics, Chinese Academy of ScienceShanghaiPeople’s Republic of China
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of ScienceBeijingPeople’s Republic of China
  3. 3.University of Chinese Academy of ScienceBeijingPeople’s Republic of China

Personalised recommendations