Advertisement

Biosynthesis of Ag@CuO core–shell nanostructures for non-enzymatic glucose sensing using screen-printed electrode

  • T. Dayakar
  • K. Venkateswara RaoEmail author
  • Jinsub ParkEmail author
  • Potharaju Krishna
  • P. Swaroopa
  • Yuexing Ji
Article
  • 20 Downloads

Abstract

Ag@CuO core shell nanostructures (ACCS NSs) was successfully synthesized using Ocimum tenuiflorum leaf extract when applied for non-enzymatic glucose sensor. SEM, HR-TEM, XRD, UV–vis, and FTIR were used to estimate the structural, optical and morphological properties of ACCS NSs. Cyclic voltammetry and ampherometry were used to determine the electrochemical and electrocatalytic characteristics of 0.2 wt% ACCS NSs with screen-printed electrodes (SPEs) to sense glucose in 0.1 M NaOH solution. Optimum potential was obtained at + 0.4 V of current response with a linear range of 1 to 9.2 mM. In addition, 0.2 wt% ACCS NSs with SPEs had a low detection limit of 0.006 μM and sensitivity of 3763.44 μA mM−1 cm−2. Modified ACCS/SPE electrodes were highly selective for glucose in the presence of chlorine ions, sugars and non-sugar compounds. It could be inferred from the evidence that the ACCS NSs performs effectively in the aspect of non-enzymatic glucose sensing.

Notes

Acknowledgements

Dayakar Thatikayala acknowledge the fund support of Rajiv Gandhi National Fellowship (RGNF) (F1-17.1/2013-14/RGNF-2013-14-SC-AND-41054), University grant commission (UGC), Government of India and acknowledge the center for nanoscience and technology, IST, JNTUH, Hyderabad, Telangana, India for providing lab and instrument facility.

Supplementary material

10854_2019_1307_MOESM1_ESM.docx (5.8 mb)
Supplementary material 1 (DOCX 5944 kb)

References

  1. 1.
    A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as non-enzymatic glucose sensor. Sens. Actuators B Chem. 266, 294–301 (2018)CrossRefGoogle Scholar
  2. 2.
    H. Xu, C. Xia, S. Wang, F. Han, M.K. Akbari, Z. Hai, S. Zhuiykov, Electrochemical non-enzymatic glucose sensor based on hierarchical 3D Co3O4/Ni heterostructure electrode for pushing sensitivity boundary to a new limit. Sens. Actuators B Chem. 267, 93–103 (2018)CrossRefGoogle Scholar
  3. 3.
    F. Wang, Y. Zhang, W. Liang, L. Chen, Y. Lia, X. He, Non-enzymatic glucose sensor with high sensitivity based on Cu–Al layered double hydroxides. Sens. Actuators B Chem. 273, 41–47 (2018)CrossRefGoogle Scholar
  4. 4.
    Y. Su, H. Guo, Z. Wang, Y. Long, Y. Tu, Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sens. Actuators B Chem. 255, 2510–2519 (2018)CrossRefGoogle Scholar
  5. 5.
    L. Zhang, C. Ye, X. Li, Y. Ding, H. Liang, G. Zhao, Y. Wang, A CuNi/C nanosheet array based on a metal-organic framework derivate as a supersensitive non-enzymatic glucose sensor. J. Iran. Chem. Soc. 16, 1061–1069 (2019)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, Q. Sheng, J. Zheng, Synthesis of palladium nanocubes decorated polypyrrole nanotubes and its application for electrochemical sensing. Sens. Actuators B Chem. 255, 2510–2519 (2018)CrossRefGoogle Scholar
  7. 7.
    W.H. Antink, Y. Choi, K. Seong, Y. Piao, Simple synthesis of CuO/Ag nanocomposite electrode using precursor ink for non-enzymatic electrochemical hydrogen peroxide sensing. Sens. Actuators B Chem. 255, 1995–2001 (2018)CrossRefGoogle Scholar
  8. 8.
    P. Bollella, G. Fusco, D. Stevar, L. Gorton, F. Mazzei, A glucose/oxygen enzymatic fuel cell based on gold nanoparticles modified graphene screen-printed electrode. Proof-of-concept in human saliva. Sens. Actuators B Chem. 256, 921–930 (2018)CrossRefGoogle Scholar
  9. 9.
    M. Figiela, M. Wysokowski, M. Galinski, T. Jesionowski, I. Stepniak, Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sens. Actuators B Chem. 272, 296–307 (2018)CrossRefGoogle Scholar
  10. 10.
    G. He, L. Wang, One-step preparation of ultra-thin copper oxide nanowire arrays/copper wire electrode for non-enzymatic glucose sensor. Ionics 24, 3167 (2018)CrossRefGoogle Scholar
  11. 11.
    S. Marini, C. Espro, A. Bonavita, S. Galvagno, G. Ne, In-situ grown flower-like nanostructured CuO on screen printed carbon electrodes for non-enzymatic amperometric sensing of glucose. Microchim. Acta 184, 7 (2017)Google Scholar
  12. 12.
    D.V.H. Thien, H.T. Toan, T.T.B. Quyen, N.M. Tri, Electrospun CuO/Ag nanofibers for nonenzymatic glucose sensors. Can Tho Univ. J. Sci. 6(2017), 63–68 (2017)Google Scholar
  13. 13.
    H. Xie, Q. Ke, X. Xiong, Preparation of a Cu2O/rGO porous composite through a double-sacrificial-template method for non-enzymatic glucose detection. J. Mater. Sci. 52, 5652–5660 (2017)CrossRefGoogle Scholar
  14. 14.
    X. Deng, C. Wang, E. Zhou, J. Huang, M. Shao, X. Wei, X. Liu, M. Ding, X. Xijin, One-step solvothermal method to prepare Ag/Cu2O composite with enhanced photocatalytic properties. Nanoscale Res. Lett. 11, 29 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Tao, M. Yang, H. Chen, M. Ren, G. Chen, Microfluidic synthesis of Ag@Cu2O core–shell nanoparticles with enhanced photocatalytic activity. J. Colloid Interface Sci. 486, 16–26 (2017)CrossRefGoogle Scholar
  16. 16.
    M. Soltani, F. Jamali-Sheini, R. Yousefi, Effect of growth condition on structure and optical properties of hybrid Ag–CuO nanomaterials. Adv Powder Technol 27, 2196–2203 (2016)CrossRefGoogle Scholar
  17. 17.
    A.L. Yang, S.P. Li, Y.J. Wang, Synthesis of Ag@Cu2O core-shell metal-semiconductor nanoparticles and conversion to Ag@Cu core-shell bimetallic nanoparticles. Sci China Technol Sci 58(5), 881–888 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Kandula, P. Jeevanandam, Synthesis of Cu2O@Ag polyhedral core–shell nanoparticles by a thermal decomposition approach for catalytic applications. Eur. J. Inorg. Chem. 2016, 1548–1557 (2016)CrossRefGoogle Scholar
  19. 19.
    Mengzhu Liu, Yongpeng Wang, Lu Dayong, Sensitive and selective non-enzymatic glucose detection using electrospun porous CuO–CdO composite nanofibers. J. Mater. Sci. 54, 3354–3367 (2019)CrossRefGoogle Scholar
  20. 20.
    B. Momin, S. Rahman, N. Jha, U.S. Annapure, Valorization of mutant Bacillus licheniformis M09 supernatant for green synthesis of silver nanoparticles: photocatalytic dye degradation, antibacterial activity, and cytotoxicity. Bioprocess Biosyst. Eng. 42, 541–553 (2019)CrossRefGoogle Scholar
  21. 21.
    P. Kaur, S.B. Dhull, K.S. Sandhu, R.K. Salar, S.S. Purewal, Tulsi (Ocimum tenuiflorum) seeds: in vitro DNA damage protection, bioactive compounds and antioxidant potential. J. Food Meas. Charact 12, 1530–1538 (2018)CrossRefGoogle Scholar
  22. 22.
    S. Saha, T. Dey, S. Adhikari, S. Mukhopadhyay, C. Sengupta, P. Ghosh, Effects of plant growth regulators on efficient plant regeneration efficiency and genetic stability analysis from two Ocimum tenuiflorum L. morphotypes. Rendiconti Lincei 27, 609–628 (2016)CrossRefGoogle Scholar
  23. 23.
    R.S. Patil, M.R. Kokate, S.S. Kolekar, Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim. Acta Part A 91, 234–238 (2012)CrossRefGoogle Scholar
  24. 24.
    K. Roy, C.K. Ghosh, C.K. Sarkar, Selective amino acid detection by green synthesized copper nanoparticles prepared using basil (Ocimum tenuiflorum) flower extract. Microsyst. Technol. A (2017).  https://doi.org/10.1007/s00542-018-4205-7 Google Scholar
  25. 25.
    V. Guzsvány, J. Anojčić, E. Radulović, O. Vajdle, I. Stanković, D. Madarász, Z. Kónya, K. Kalcher, Screen-printed enzymatic glucose biosensor based on a composite made from multiwalled carbon nanotubes and palladium containing particles. Microchim. Acta 184, 1987 (2017)CrossRefGoogle Scholar
  26. 26.
    R. Suresh, V. Ponnuswamy, R. Mariappan, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method. Appl. Surf. Sci. 273, 457–464 (2013)CrossRefGoogle Scholar
  27. 27.
    H.B. Premkumar, B.S. Ravikumar, D.V. Sunith, H. Nagabushana, S.C. Sharma, S.M. Bhat, B.M. Nagabhushana, R.P.S. Chakradhar, M.B. Savitha, Investigation of structural and luminescence properties of Ho3+ doped YAlO3 nanophosphors synthesized through solution combustion route. Spectrochim. Acta Part A 115, 234–243 (2013)CrossRefGoogle Scholar
  28. 28.
    M.A. Majeed Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films. Nanoscale Res. Lett. 6, 434 (2011)CrossRefGoogle Scholar
  29. 29.
    J. Yang, Z. Li, C. Zhao, Y. Wang, X. Liu, Facile synthesis of Ag-Cu2O composites with enhanced photocatalytic activity. Mater. Res. Bull 60, 530–536 (2014)CrossRefGoogle Scholar
  30. 30.
    A. Asha Radhakrishnan, B. Baskaran Beena, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Indian J. Adv. Chem. Sci 2, 158–161 (2014)Google Scholar
  31. 31.
    Y. Wang, T. Jiang, D. Meng, J. Kong, J. Hanxiang, M. Yu, Controllable fabrication nanostructured copper compound on Cu substrate by one-step route. RSC Adv. 5, 16277–16283 (2015)CrossRefGoogle Scholar
  32. 32.
    N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 6, 158–164 (2015)CrossRefGoogle Scholar
  33. 33.
    A.M. Fayaz, K. Balaji, M. Girilal, R. Yadav, P.T. Kalaichelvan, R. Venketesan, Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 6, 103–109 (2010)CrossRefGoogle Scholar
  34. 34.
    K. Jilie, Y.U. Shaoning, Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549–559 (2007)CrossRefGoogle Scholar
  35. 35.
    L.C. Jiang, W.D. Zhang, A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 25, 1402–1407 (2010)CrossRefGoogle Scholar
  36. 36.
    Z. Jin, P. Li, B. Zheng, H. Yuan, D. Xiao, CuO–Ag2O nanoparticles grown on a AgCuZn alloy substrate in situ for use as a highly sensitive non-enzymatic glucose sensor. Talanta 80, 1371–1377 (2014)Google Scholar
  37. 37.
    N. Lu, C. Shao, X. Li, F. Miao, K. Wang, Y. Liu, CuO nanoparticles/nitrogen-doped carbon nanofibers modified glassy carbon electrodes for non-enzymatic glucose sensors with improved sensitivity. Ceram. Int. 42, 11285–11293 (2016)CrossRefGoogle Scholar
  38. 38.
    W. Wang, Z.Y. Li, W. Zheng, J. Yang, H.N. Zhang, C. Wang, Electrospun palladium (IV)-doped copper oxide composite nanofibers for non-enzymatic glucose sensors. Electrochem. Commun. 11, 1811–1814 (2009)CrossRefGoogle Scholar
  39. 39.
    D.W. Hwanga, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018)CrossRefGoogle Scholar
  40. 40.
    L. Zhang, H. Liang, X. Ma, C. Ye, G. Zhao, A vertically aligned CuO nanosheet film prepared by electrochemical conversion on Cu-based metal-organic framework for non-enzymatic glucose sensors. Microchem. J. 146, 479–485 (2019)CrossRefGoogle Scholar
  41. 41.
    S. Bilal, W. Ullah, A.H. Ali Shah, Polyaniline@CuNi nanocomposite: a highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 284, 382–391 (2018)CrossRefGoogle Scholar
  42. 42.
    X. Wang, C.Y. Ge, K. Chen, Y.X. Zhang, An ultrasensitive non-enzymatic glucose sensors based on controlled petal-like CuO nanostructure. Electrochim. Acta 259, 225–232 (2018)CrossRefGoogle Scholar
  43. 43.
    J.M. Marioli, T. Kuwana, Electrochemical characterization of carbohydrate oxidation at copper electrodes. Electrochim. Acta 37, 1187–1197 (1992)CrossRefGoogle Scholar
  44. 44.
    B.Z. Zheng, G.Y. Liu, A.W. Yao, Y.L. Xiao, J. Du, Y. Guo, D. Xiao, Q. Hu, M.M.F. Choi, A sensitive AgNPs/CuO nanofibers non-enzymatic glucose sensor based on electrospinning technology. Sens. Actuators B 195, 431–438 (2014)CrossRefGoogle Scholar
  45. 45.
    X.X. Xiao, M. Wang, H. Li, Y.C. Pan, P.C. Si, Non-enzymatic glucose sensors based on controllable nanoporous gold/copper oxide nanohybrids. Talanta 125, 366–371 (2014)CrossRefGoogle Scholar
  46. 46.
    C.Q. Dong, H. Zhong, T.Y. Kou, J. Frenzel, G. Eggeler, Z.H. Zhang, Three-dimensional Cu foam-supported single crystalline mesoporous Cu2O nanothorn arrays for ultra-highly sensitive and efficient nonenzymatic detection of glucose. ACS Appl. Mater. Interfaces 7, 20215–20223 (2015)CrossRefGoogle Scholar
  47. 47.
    Y. Ding, Y. Wang, L.A. Su, H. Zhang, Y. Lei, Preparation and characterization of NiO–Ag nanofibers, NiO nanofibers, and porous Ag: towards the development of a highly sensitive and selective non-enzymatic glucose sensor. J. Mater. Chem. 20, 9918–9926 (2010)CrossRefGoogle Scholar
  48. 48.
    G.M. Wang, X.H. Lu, T. Zhai, Y.C. Ling, H.Y. Wang, Y.X. Tong, Y. Li, Free-standing nickel oxide nanoflake arrays: synthesis and application for highly sensitive non-enzymatic glucose sensors. Nanoscale 4, 3123–3127 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Nanoscience and Technology, Institute of Science and TechnologyJawaharlal Nehru Technological University HyderabadHyderabadIndia
  2. 2.Department of Electronic EngineeringHanyang UniversitySeoulSouth Korea
  3. 3.Department of PhysicsOsmania UniversityHyderabadIndia
  4. 4.Department of Life ScienceOsmania UniversityHyderabadIndia

Personalised recommendations