Advertisement

Enhancement of the electrical-field-induced strain in sodium bismuth titanate-based lead-free ceramics by co-doping with Mn and Nb

  • Yuxia Kong
  • Weijian Wang
  • Liye Chen
  • Zhenwei Huang
  • Jigong HaoEmail author
Article
  • 13 Downloads

Abstract

Lead-free (Bi0.5Na0.5)0.935Ba0.065Ti1−x(Mn0.5Nb0.5)xO3 piezoelectric ceramics with excellent strain properties were prepared by conventional solid state reaction route. The effects of Mn/Nb on the structure and electrical properties of the ceramics have been investigated. The replacement of Ti by Mn/Nb induced a ferroelectric–ergodic relaxor phase transition with the degradations of the long-term ferroelectric properties. Near the ferroelectric–ergodic phase boundary, the electric-field-induced strain was significantly enhanced and reached the highest strain value of 0.37% (80 kV/cm, corresponds to a Smax/Emax = 463 pm/V) at 0.005 Mn/Nb addition. Temperature dependent measurements of polarization, permittivity, large signal piezoelectric constant and strain indicate that a reversible field-induced phase transformation from ergodic relaxor phase to ferroelectric is the main reason for the large strain response. Moreover, due to the reversible field-induced phase transition, the material with high-strain showed good fatigue resistance (up to 105 cycles), which can be considered as one of promising candidate used in actuator applications.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21603092). The Science and Technology Innovation Foundation of Liaocheng University for College Students (No. 26312170513). The National Undergraduate Training Programs for Innovation and Entrepreneurship of China (No. 201710447029).

References

  1. 1.
    P.K. Panda, J. Mater. Sci. 44, 5049–5062 (2009)CrossRefGoogle Scholar
  2. 2.
    L. Zheng, X. Lu, H. Shang, Z. Xi, R. Wang, J. Wang, P. Zheng, W. Cao, Phys. Rev. B. 91, 184105 (2015)CrossRefGoogle Scholar
  3. 3.
    J. Hao, Z. Xu, R. Chu, S. Chu, W. Li, P. Fu, J. Du, C. Hu, Mater. Lett. 193, 138–141 (2017)CrossRefGoogle Scholar
  4. 4.
    J.G. Hao, W. Li, J.W. Zhai, H. Chen, Mater. Sci. Eng. R Rep. 135, 1–57 (2019)CrossRefGoogle Scholar
  5. 5.
    S.T. Zhang, A.B. Kounga, E. Aulbach, H. Ehrenberg, Appl. Phys. Lett. 91, 112906 (2007)CrossRefGoogle Scholar
  6. 6.
    J.E. Daniels, W. Jo, J. Rödel, V. Honkimäki, J.L. Jones, Acta Mater. 58, 2103–2111 (2010)CrossRefGoogle Scholar
  7. 7.
    W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, Z. Ji, Dalton Trans. 45, 8573–8586 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Bai, D. Chen, Y. Huang, B. Shen, J. Zhai, Z. Ji, J. Alloy. Compd. 667, 6–17 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Maqbool, A. Hussain, J.U. Rahman, T.K. Song, W.J. Kim, J. Lee, M.H. Kim, Ceram. Int. 40(2014), 11905–11914 (1914)Google Scholar
  10. 10.
    J.U. Rahman, A. Hussain, A. Maqbool, G.H. Ryu, T.K. Song, W.J. Kim, M.H. Kim, J. Alloy. Compd. 593, 97–102 (2014)CrossRefGoogle Scholar
  11. 11.
    J. Janbua, S. Niemchareon, R. Muanghlua, N. Vittayakorn, Ferroelectrics 490, 13–22 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Li, F. Wang, X. Ye, Y. Xie, Y. Tang, D. Sun, W. Shi, X. Zhao, H. Luo, J. Am. Ceram. Soc. 97, 3615–3623 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Li, J. Hao, Z. Xu, W. Li, R. Chu, Mater. Lett. 209, 408–412 (2017)CrossRefGoogle Scholar
  14. 14.
    X.R. Jia, J.J. Zhang, H.J. Xing, J.Y. Wang, P. Zheng, F. Wen, J. Alloy. Compd. 741, 7–13 (2018)CrossRefGoogle Scholar
  15. 15.
    H.L. Pan, J.J. Zhang, X.R. Jia, H.J. Xing, J.Y. He, J.Y. Wang, F. Wen, Ceram. Int. 44, 5785–5789 (2018)CrossRefGoogle Scholar
  16. 16.
    Q. Yao, F. Wang, F. Xu, C.M. Leung, T. Wang, Y. Tang, X. Ye, Y. Xie, D. Sun, W. Shi, ACS Appl. Mater. Interfaces 7, 5066 (2015)CrossRefGoogle Scholar
  17. 17.
    X. Liu, H. Guo, X. Tan, J. Eur. Ceram. Soc. 34, 2997–3006 (2014)CrossRefGoogle Scholar
  18. 18.
    C.C. Jin, F.F. Wang, Q.R. Yao, Y.X. Tang, T. Wang, W.Z. Shi, Ceram. Int. 40, 6143–6150 (2014)CrossRefGoogle Scholar
  19. 19.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, J. Alloy. Compd. 677, 96–104 (2016)CrossRefGoogle Scholar
  20. 20.
    J. Hao, Z. Xu, R. Chu, W. Li, J. Du, G. Li, J. Appl. Phys. 48, 472001 (2015)Google Scholar
  21. 21.
    L. Li, J. Hao, R. Chu, Z. Xu, W. Li, J. Du, P. Fu, Ceram. Int. 42, 9419–9425 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Li, J. Hao, Z. Xu, W. Li, R. Chu, Mater. Lett. 184, 152–156 (2016)CrossRefGoogle Scholar
  23. 23.
    L. Li, J. Hao, Z. Xu, W. Li, R. Chu, J. Electron. Mater. 47, 1512–1518 (2018)CrossRefGoogle Scholar
  24. 24.
    L. Li, J. Hao, Z. Xu, W. Li, R. Chu, G. Li, Ceram. Int. 42, 14886–14893 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Hao, B. Shen, J. Zhai, H. Chen, J. Am. Ceram. Soc. 97, 1776–1784 (2014)CrossRefGoogle Scholar
  26. 26.
    J. Hao, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, G. Li, J. Eur. Ceram. Soc. 36, 4003–4014 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Hao, X. Zhang, Z. Xu, R. Chu, W. Li, P. Fu, J. Du, Ceram. Int. 42, 12964–12970 (2016)CrossRefGoogle Scholar
  28. 28.
    K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. Soc. 95, 2241–2247 (2012)CrossRefGoogle Scholar
  29. 29.
    K.T.P. Seifert, W. Jo, J. Rödel, J. Am. Ceram. Soc. 93, 1392–1396 (2010)Google Scholar
  30. 30.
    F. Craciun, C. Galassi, R. Birjega, J. Appl. Phys. 112, 2236–2458 (2012)CrossRefGoogle Scholar
  31. 31.
    H. Zhong, H. Zhang, J. Magn. Magn. Mater. 283, 247–250 (2004)CrossRefGoogle Scholar
  32. 32.
    I. XPS International, Handbook of the elements and native oxides. (1999)Google Scholar
  33. 33.
    C. Zhou, X. Liu, W. Li, C. Yuan, Mater. Chem. Phys. 114, 832–836 (2009)CrossRefGoogle Scholar
  34. 34.
    H.S. Han, W. Jo, J.K. Kang, C.W. Ahn, I. Won Kim, K.K. Ahn, J.S. Lee, J. Appl. Phys. 113, 113–126 (2013)Google Scholar
  35. 35.
    W. Bai, D. Chen, P. Zheng, J. Xi, Y. Zhou, B. Shen, J. Zhai, Z. Ji, J. Eur. Ceram. Soc. 37, 2591–2604 (2017)CrossRefGoogle Scholar
  36. 36.
    W. Bai, D. Chen, P. Zheng, J. Zhang, F. Wen, B. Shen, J. Zhai, Z. Ji, J. Alloy. Compd. 709, 646–657 (2017)CrossRefGoogle Scholar
  37. 37.
    J. He, J. Zhang, H. Xing, H. Pan, X. Jia, J. Wang, P. Zheng, Ceram. Int. 43, 250–255 (2016)CrossRefGoogle Scholar
  38. 38.
    X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, J. Materiomics 4, 202–207 (2018)CrossRefGoogle Scholar
  39. 39.
    W. Jo, T. Granzow, E. Aulbach, J. Roedel, D. Damjanovic, J. Appl. Phys. 105, 094102 (2009)CrossRefGoogle Scholar
  40. 40.
    J. Hao, B. Shen, J. Zhai, H. Chen, J. Appl. Phys. 115, 113 (2014)CrossRefGoogle Scholar
  41. 41.
    F. Wang, X. Min, Y. Tang, W. Tao, W. Shi, C.M. Leung, J. Am. Ceram. Soc. 95, 1955–1959 (2012)CrossRefGoogle Scholar
  42. 42.
    H.W. Shi, Y.P. Zhu, Y.M. Zhao, C. Liu, X.Z. Ren, J.G. Hao, W. Li, J. Alloy. Compd. 767, 666–674 (2018)CrossRefGoogle Scholar
  43. 43.
    D. Robert, J. Wook, D. John, S. Silke, R. Jürgen, J. Am. Ceram. Soc. 94, 4283–4290 (2011)CrossRefGoogle Scholar
  44. 44.
    J. Hao, Z. Xu, R. Chu, W. Li, J. Du, P. Fu, Rsc Adv. 5, 82605–82616 (2015)CrossRefGoogle Scholar
  45. 45.
    E.A. Patterson, D.P. Cann, Appl. Phys. Lett. 101, 5040–5044 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuxia Kong
    • 1
  • Weijian Wang
    • 1
  • Liye Chen
    • 1
  • Zhenwei Huang
    • 1
  • Jigong Hao
    • 2
    Email author
  1. 1.College of Chemistry and Chemical EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China
  2. 2.College of Materials Science and EngineeringLiaocheng UniversityLiaochengPeople’s Republic of China

Personalised recommendations