Dependence of phase distribution and magnetic properties of milled and annealed ZnO·Fe2O3 nanostructures as efficient adsorbents of heavy metals

  • L. KhezamiEmail author
  • T. S. Alwqyan
  • M. Bououdina
  • B. Al-Najar
  • M. N. Shaikh
  • A. Modwi
  • Kamal K. Taha


Mixed oxides and ferrites nanoparticles (NPs) have shown a considerable potential in environmental applications of purifying wastewater from heavy metal by adsorption. In this paper, ZnO·Fe2O3 powders mixture were mechanical milled followed by annealing at 500, 600 and 700 °C. X-ray diffraction characterization confirmed the phase composition and showed crystal growth from 7 to 11 nm due to annealing. Scanning electron microscope revealed agglomerated and spherical particles that increased in size with same trend as XRD results. These nanopowders exhibited a ferromagnetic behavior with varying magnetization and coercivity, the saturation magnetization was found to decrease from 1.45 to 0.09 emu/g with increasing annealing temperature. This was explained due to phase transition and the allocation of A and B atoms in the tetrahedral and octahedral sites in ferrites as a result of annealing. Moreover, BET surface calculations showed an un-patterned pore size distribution with a maximum surface area of 1.84 m2/g obtained after annealing at 500 °C. This sample also demonstrated the highest adsorption capacity at 49.42, 54.69 and 12.34 mg/g for heavy metals ions of nickel, cadmium and chromium, respectively.



  1. 1.
    Z. Fan, J.G. Lu, Zinc oxide nanostructures: synthesis and properties. J. Nanosci. Nanotechnol. 5(10), 1561–1573 (2005)CrossRefGoogle Scholar
  2. 2.
    R. Bomila, A. Venkatesan, S. Srinivasan, Structural, luminescence and photocatalytic properties of pure and octylamine capped ZnO nanoparticles. Optik 158, 565–573 (2018)CrossRefGoogle Scholar
  3. 3.
    J. Becker et al., Tuning of the crystallite and particle sizes of ZnO nanocrystalline materials in solvothermal synthesis and their photocatalytic activity for dye degradation. J. Phys. Chem. C 115(28), 13844–13850 (2011)CrossRefGoogle Scholar
  4. 4.
    P. Mokoena, Study of the Structure, Particle Morphology and Optical Properties of Mixed Metal Oxides (University of the Free State, Bloemfontein, 2017)Google Scholar
  5. 5.
    L. Khezamia et al., Removal of Cadmium (II) from aqueous solution by zinc oxide nanoparticles: kinetic and thermodynamic studies. Desalination Water Treat. 62, 346–354 (2017)CrossRefGoogle Scholar
  6. 6.
    B. Ladgaonkar, A. Vaingankar, X-ray diffraction investigation of cation distribution in CdχCu1-χFe2O4 ferrite system. Mater. Chem. Phys. 56(3), 280–283 (1998)CrossRefGoogle Scholar
  7. 7.
    Z. Bai, Y. Zhang, Self-powered UV–visible photodetectors based on ZnO/Cu2O nanowire/electrolyte heterojunctions. J. Alloys Compd. 675, 325–330 (2016)CrossRefGoogle Scholar
  8. 8.
    A. Shirzadi, A. Nezamzadeh-Ejhieh, Enhanced photocatalytic activity of supported CuO–ZnO semiconductors towards the photodegradation of mefenamic acid aqueous solution as a semi real sample. J. Mol. Catal. A 411, 222–229 (2016)CrossRefGoogle Scholar
  9. 9.
    V. Arumugam, K.G. Moodley, Mixed metal and metal oxide nanofibers: preparation, fabrication, and applications, in Handbook of Nanofibers (2018), pp. 1–24Google Scholar
  10. 10.
    T. Tatarchuk et al., Structure-redox reactivity relationships in Co1−xZnxFe2O4: the role of stoichiometry. New J. Chem. 43(7), 3038–3049 (2019)CrossRefGoogle Scholar
  11. 11.
    Q. Song, Z.J. Zhang, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture. J. Am. Chem. Soc. 134(24), 10182–10190 (2012)CrossRefGoogle Scholar
  12. 12.
    J. Kennedy et al., Fabrication of surface magnetic nanoclusters using low energy ion implantation and electron beam annealing. Nanotechnology 22(11), 115602 (2011)CrossRefGoogle Scholar
  13. 13.
    J. Leveneur et al., Large room temperature magnetoresistance in ion beam synthesized surface Fe nanoclusters on SiO2. Appl. Phys. Lett. 98(5), 053111 (2011)CrossRefGoogle Scholar
  14. 14.
    K. Niemirowicz et al., Magnetic nanoparticles as new diagnostic tools in medicine. Adv. Med. Sci. 57(2), 196–207 (2012)CrossRefGoogle Scholar
  15. 15.
    S. Medeiros et al., Stimuli-responsive magnetic particles for biomedical applications. Int. J. Pharm. 403(1–2), 139–161 (2011)CrossRefGoogle Scholar
  16. 16.
    Y. Tang et al., Solvothermal synthesis of Co1-xNixFe2O4 nanoparticles and its application in ammonia vapors detection. Prog. Nat. Sci.: Mater. Int. 22(1), 53–58 (2012)CrossRefGoogle Scholar
  17. 17.
    D. Lu et al., Synthesis of magnetic ZnFe2O4/graphene composite and its application in photocatalytic degradation of dyes. J. Alloy. Compd. 579, 336–342 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Gupta, P. Paul, N. Kumar, Synthesis and characterization of DHA/ZnO/ZnFe2O4 nanostructures for biomedical imaging application. Procedia Mater. Sci. 5, 198–203 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Ebrahimi et al., Magnetic properties of zinc ferrite nanoparticles synthesized by coprecipitation method. J. Supercond. Novel Magn. 27(6), 1587–1592 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Marinca et al., Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectron. Adv. Mater. Rapid Commun. 5, 39–43 (2011)Google Scholar
  21. 21.
    A. Singh et al., Synthesis, characterization and performance of zinc ferrite nanorods for room temperature sensing applications. J. Alloy. Compd. 618, 475–483 (2015)CrossRefGoogle Scholar
  22. 22.
    R. Rahimi, M. Heidari-Golafzani, M. Rabbani, Preparation and photocatalytic application of ZnFe2O4@ ZnO core–shell nanostructures. Superlatt. Microstruct. 85, 497–503 (2015)CrossRefGoogle Scholar
  23. 23.
    B. Bogacz et al., Two-level model description of superparamagnetic relaxation in nanoferrites (Co, Zn) Fe2O4. Acta Phys. Polonica. A Gen. Phys. Solid State Phys. Appl. Phys. 134(5), 493–497 (2018)Google Scholar
  24. 24.
    A. Shanmugavani et al., Size dependent electrical and magnetic properties of ZnFe2O4 nanoparticles synthesized by the combustion method: comparison between aspartic acid and glycine as fuels. J. Magn. Magn. Mater. 354, 363–371 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Valenzuela et al., Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4. J. Photochem. Photobiol., A 148(1–3), 177–182 (2002)CrossRefGoogle Scholar
  26. 26.
    S.-W. Cao et al., ZnFe2O4 nanoparticles: microwave-hydrothermal ionic liquid synthesis and photocatalytic property over phenol. J. Hazard. Mater. 171(1–3), 431–435 (2009)CrossRefGoogle Scholar
  27. 27.
    X. Li et al., A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. J. Colloid Interface Sci. 358(1), 102–108 (2011)CrossRefGoogle Scholar
  28. 28.
    I. Mironyuk et al., Effects of enhanced clusterization of water at a surface of partially silylated nanosilica on adsorption of cations and anions from aqueous media. Microporous Mesoporous Mater. 277, 95–104 (2019)CrossRefGoogle Scholar
  29. 29.
    C.R. Chaudhury et al., Magneto-optical properties of α-Fe2O3@ ZnO nanocomposites prepared by the high energy ball-milling technique. J. Phys. Chem. Solids 92, 38–44 (2016)CrossRefGoogle Scholar
  30. 30.
    J.-R. Fu et al., Synthesis of porous magnetic Fe3O4/Fe@ ZnO core–shell heterostructure with superior capability for water treatment. J. Alloy. Compd. 650, 463–469 (2015)CrossRefGoogle Scholar
  31. 31.
    B.C. Lippens, J. De Boer, Studies on pore systems in catalysts: V. The t method. J. Catal. 4(3), 319–323 (1965)CrossRefGoogle Scholar
  32. 32.
    E. Kester et al., Thermal behavior and cation distribution of submicron copper ferrite spinels CuxFe3–xO4 (0 ≤ x ≤ 0.5) studied by DTG, FTIR, and XPS. J. Solid State Chem. 126(1), 7–14 (1996)CrossRefGoogle Scholar
  33. 33.
    M. Zhou et al., Preparation and photocatalytic activity of Fe-doped mesoporous titanium dioxide nanocrystalline photocatalysts. Mater. Chem. Phys. 93(1), 159–163 (2005)CrossRefGoogle Scholar
  34. 34.
    L. McCusker et al., Rietveld refinement guidelines. J. Appl. Crystallogr. 32(1), 36–50 (1999)CrossRefGoogle Scholar
  35. 35.
    D.K. Lonsdale, International Tables for X-Ray Crystallography (Kynoch Press, Birmingham, 1968)Google Scholar
  36. 36.
    V. Šepelák, K. Tkacova, Mechanically induced structural disordering in spinel ferrites. Acta Montan. Slovaca 3, 266–272 (1997)Google Scholar
  37. 37.
    M. Kaur, S. Rana, P. Tarsikka, Comparative analysis of cadmium doped magnesium ferrite Mg (1 − x) Cdx Fe2O4 (x = 0.0, 0.2, 0.4, 0.6) nanoparticles. Ceram. Int. 38(5), 4319–4323 (2012)CrossRefGoogle Scholar
  38. 38.
    M. Gateshki et al., Structure of nanocrystalline MgFe2O4 from X-ray diffraction, Rietveld and atomic pair distribution function analysis. J. Appl. Crystallogr. 38(5), 772–779 (2005)CrossRefGoogle Scholar
  39. 39.
    Z. Khan et al., Thermal hysteresis of permeability and transport properties of Cu substituted. Adv. Chem. Lett. 1, 111–116 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Cullity, S. Stock, Elements of X-Ray Diffraction (Prentice Hall, New Jersey, 2001), p. 170Google Scholar
  41. 41.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 32(5), 751–767 (1976)CrossRefGoogle Scholar
  42. 42.
    A.N. Birgani, M. Niyaifar, A. Hasanpour, Study of cation distribution of spinel zinc nano-ferrite by X-ray. J. Magn. Magn. Mater. 374, 179–181 (2015)CrossRefGoogle Scholar
  43. 43.
    D. Kurmude et al., X-ray diffraction and cation distribution studies in zinc-substituted nickel ferrite nanoparticles. J. Supercond. Novel Magn. 27(2), 547–553 (2014)CrossRefGoogle Scholar
  44. 44.
    A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, Magnetic properties of rare earth ion (Sm3 +) added nanocrystalline Mg–Cd ferrites, prepared by oxalate co-precipitation method. J. Magn. Magn. Mater. 322(24), 3823–3827 (2010)CrossRefGoogle Scholar
  45. 45.
    K.G. Bhattacharyya, S.S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140(2), 114–131 (2008)CrossRefGoogle Scholar
  46. 46.
    Y. Marcus, Ionic radii in aqueous solutions. Chem. Rev. 88(8), 1475–1498 (1988)CrossRefGoogle Scholar
  47. 47.
    W. Konicki et al., Equilibrium and kinetic studies on acid dye Acid Red 88 adsorption by magnetic ZnFe2O4 spinel ferrite nanoparticles. J. Colloid Interface Sci. 398, 152–160 (2013)CrossRefGoogle Scholar
  48. 48.
    I. Mironyuk et al., Effects of chemosorbed arsenate groups on the mesoporous titania morphology and enhanced adsorption properties towards Sr (II) cations. J. Mol. Liq. 282, 587–597 (2019)CrossRefGoogle Scholar
  49. 49.
    O.M. Lemine, L. Ghilouf, M. Bououdina, L. Khezami, M.O. M’hamed, T. Hassan, Nanocrystalline Ni doped α-Fe2O3 for adsorption of metals from aqueous solution. J. Alloys Compd. 588, 592–595 (2014)CrossRefGoogle Scholar
  50. 50.
    L. Khezami, M.O. M’hamed, O.M. Lemine, M. Bououdina, A. Bessadok-Jemai, Milled goethite nanocrystalline for selective and fast uptake of cadmium ions from aqueous solution. Desalination Water Treat 57(14), 6531–6539 (2016)CrossRefGoogle Scholar
  51. 51.
    Zhigang Jia, Qi Qin, Jianhong Liu, Hao Shi, Xuexia Zhang, Hu Runan, Shengbiao Li, Rongsun Zhu, The synthesis of hierarchical ZnFe2O4 architecture and their application for Cr(VI) adsorption removal from aqueous solution. Superlatt. Microstruct. 82, 174–187 (2015)CrossRefGoogle Scholar
  52. 52.
    H. Hallaji, A.R. Keshtkar, M.A. Moosavian, A novel electrospun PVA/ZnO nanofiber adsorbent for U(VI), Cu(II) and Ni(II) removal from aqueous solution. J. Taiwan Inst. Chem. Eng. 46, 109–118 (2015)CrossRefGoogle Scholar
  53. 53.
    H. Jing, C. Guohua, M.C. Lo Irene, Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 39, 4528–4536 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry, College of SciencesImam Mohammad Ibn Saud Islamic University (IMSIU)RiyadhSaudi Arabia
  2. 2.Department of Mechanical Engineering, College of EngineeringUniversity of BahrainZallaqKingdom of Bahrain
  3. 3.Department of Physics, College of ScienceUniversity of BahrainZallaqKingdom of Bahrain
  4. 4.Center of Research Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and MineralDhahranSaudi Arabia
  5. 5.College of Applied and Industrial SciencesUniversity of BahriKhartoumSudan

Personalised recommendations