Advertisement

The preparation and ozone-sensing performance of Co3O4 nanobricks

  • Ting Li
  • Jia Gao
  • Ping Fu
  • Chen Zhe
  • Shenggao Wang
  • Zhidong LinEmail author
Article
  • 15 Downloads

Abstract

Co3O4 nanobricks were prepared using the method of the hydrothermal corrosion, in which CoSn(OH)6 was the precursor, and it was corroded by NaOH and transformed into Co3O4. The phase composition and morphology of the CoSn(OH)6 and the Co3O4 nanobricks prepared were examined by using XRD, SEM, and TEM. The Co3O4 nanobricks have a face-centered cubic structure with the average nanocrystals size of 10.2 nm. The sensor made by the Co3O4 nanobricks showed an ultra-sensitivity to ozone at low operating temperatures. It exhibited a fast rate of response and recovery, as well as a high stability and repeatability. The Co3O4 nanobricks can be a promising material for sensing ozone.

Notes

Acknowledgments

This work was financially supported by the National training program of innovation and entrepreneurship for undergraduates (No 1302150810).

References

  1. 1.
    X.B. Pang, M.D. Shaw, A.C. Lewis, L.J. Carpenter, T. Batchellier, Sens. Actuators B 240, 829–837 (2017)CrossRefGoogle Scholar
  2. 2.
    Z.D. Lin, N. Li, Z. Chen, P. Fu, Sens. Actuators B 239, 501–510 (2017)CrossRefGoogle Scholar
  3. 3.
    L. Xiao, S.M. Shu, S.T. Liu, Sens. Actuators B 221, 120–126 (2015)CrossRefGoogle Scholar
  4. 4.
    S.M. Shu, M.X. Wang, Y. Wei, S.T. Liu, Sens. Actuators B 243, 1171–1180 (2017)CrossRefGoogle Scholar
  5. 5.
    F. Huang, W. Yang, F. He, S.T. Liu, Sens. Actuators B 235, 86–93 (2016)CrossRefGoogle Scholar
  6. 6.
    W. Yang, L. Feng, S.H. He, L.Y. Liu, S.T. Liu, ACS Appl. Mater. Interfaces 10(32), 27131–27140 (2018)CrossRefGoogle Scholar
  7. 7.
    G. Korotcenkov, I. Blinov, M. Ivanov, J.R. Stetter, Sens. Actuators B 120(2), 679–686 (2007)CrossRefGoogle Scholar
  8. 8.
    V.R. Mastelaro, S.C. Zilio, L.F. da Silva, P.I. Pelissari, M.I.B. Bernardi, J. Guerin, K. Aguir, Sens. Actuators B 181, 919–924 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Park, S. Kim, H. Kheel, C. Lee, Sens. Actuators B 222, 1193–1200 (2016)CrossRefGoogle Scholar
  10. 10.
    X.C. Zhang, H. Zhong, L.D. Xu, S.H. Wang, H.Z. Chi, Q.J. Pan, G. Zhang, Mater. Res. Bull. 102, 108–115 (2018)CrossRefGoogle Scholar
  11. 11.
    D.Z. Zhang, D. Wu, Y.H. Cao, X.Q. Zong, Z.M. Yang, J. Mater. Sci. 29(22), 19558–19566 (2018)Google Scholar
  12. 12.
    J.F. Tan, M.H. Dun, L. Li, J.Y. Zhao, W.H. Tan, Z.D. Lin, X.T. Huang, Sens. Actuators B 249, 44–52 (2017)CrossRefGoogle Scholar
  13. 13.
    Z.D. Lin, W.L. Song, H.M. Yang, Sens. Actuators B 173, 22–27 (2012)CrossRefGoogle Scholar
  14. 14.
    C.H. Zhu, W.Y. Guo, F.P. Du, P. Fu, Q.R. Deng, Z.D. Lin, Mater. Lett. 220, 172–174 (2018)CrossRefGoogle Scholar
  15. 15.
    Z.D. Lin, M.Y. Xu, P. Fu, Q.R. Deng, Sens. Actuators B 254, 755–762 (2018)CrossRefGoogle Scholar
  16. 16.
    X.H. Lin, Y.L. Gao, M. Jiang, Y.F. Zhang, Y.D. Hou, W.X. Dai, S.B. Wang, Z.X. Ding, Appl. Catal. B 224, 1009–1016 (2018)CrossRefGoogle Scholar
  17. 17.
    Y.J. Sun, J.Z. Jiang, Y. Liu, S.L. Wu, J. Zou, Appl. Surf. Sci. 430, 362–370 (2018)CrossRefGoogle Scholar
  18. 18.
    C.C. Liu, J.P. Hong, Y.H. Zhang, Y.X. Zhao, L. Wang, L. Wei, S.F. Chen, G.H. Wang, J.L. Li, Fuel 180, 777–784 (2016)CrossRefGoogle Scholar
  19. 19.
    N. Yan, L. Hu, Y. Li, Y. Wang, H. Zhong, X.Y. Hu, X.K. Kong, Q.W. Chen, J. Phys. Chem. C 116(12), 7227–7235 (2012)CrossRefGoogle Scholar
  20. 20.
    Z.W. Chen, Y.Y. Hong, Z.D. Lin, L.M. Liu, X.W. Zhang, Electron. Mater. Lett. 13(3), 270–276 (2017)CrossRefGoogle Scholar
  21. 21.
    R.B. Rakhi, W. Chen, D.Y. Cha, H.N. Alshareef, Nano Lett. 12(5), 2559–2567 (2012)CrossRefGoogle Scholar
  22. 22.
    J. Yang, H.W. Liu, W.N. Martens, R.L. Frost, J. Phys. Chem. C 114(1), 111–119 (2010)CrossRefGoogle Scholar
  23. 23.
    Y. Qu, H. Wang, H. Chen, J. Xiao, Z.D. Lin, K. Dai, RSC Adv. 5(21), 16446–16449 (2015)CrossRefGoogle Scholar
  24. 24.
    Z. Lin, C. Guo, W. Song, Nanosci. Nanotechnol. Lett. 5(8), 907–911 (2013)CrossRefGoogle Scholar
  25. 25.
    H.Y. Liu, W. Yang, M.X. Wang, L. Xiao, S.T. Liu, Sens. Actuators B 236, 490–498 (2016)CrossRefGoogle Scholar
  26. 26.
    L. Xiao, S.R. Xu, G. Yu, S.T. Liu, Sens. Actuators B 255, 2002–2010 (2018)CrossRefGoogle Scholar
  27. 27.
    B.X. Zhang, X.X. Zhou, C.J. Jiang, F.D. Qu, M.H. Yang, Mater. Lett. 218, 127–130 (2018)CrossRefGoogle Scholar
  28. 28.
    X.L. Yu, C.S. Xie, L. Yang, S.P. Zhang, Sens. Actuators B 195, 439–445 (2014)CrossRefGoogle Scholar
  29. 29.
    L.Y. Liu, S.T. Liu, ACS Sustain. Chem. Eng. 6(10), 13427–13434 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hubei Key Laboratory of Plasma Chemistry and Advanced MaterialsWuhan Institute of TechnologyWuhanChina

Personalised recommendations