Enhanced photocatalytic activity of Fe3O4/SnO2 magnetic nanocomposite for the degradation of organic dye

  • V. Maria Vinosel
  • S. Anand
  • M. Asisi Janifer
  • S. PaulineEmail author
  • S. Dhanavel
  • P. Praveena
  • A. Stephen


Composite photocatalysts composed of semiconductor and magnetic matters are of great concern due to their excellent catalytic and recyclable performances. In this work, hydrothermal synthesis technique was employed to prepare magnetic Fe3O4/SnO2 nanocomposites (FS1, FS2, and FS3) of different molar ratios. The nanocomposites material was characterized by powder X-ray diffraction (XRD), high resolution scanning electron microscopy (HRSEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (UV–vis DRS), Vibrating sample magnetometer (VSM) analysis. The SnO2 optical absorption was extended into visible region after coupling with Fe3O4. The magnetic features of Fe3O4/SnO2 nanocomposites offer simply separable method for reusability of the material in photocatalytic application. The catalytic activity of as prepared magnetically separable nanocomposites was inspected based on photodegradation of crystal violet as model organic pollutant. The extent of variation of field-dependent photo and dark current of the samples were determined from photoconductivity studies. The photoconductivity studies revealed the ohmic nature of the samples with a linear increase in both dark and photocurrent with a corresponding increase with increase in the applied field. The nanocomposite FS1 depicted good photocatalytic activity due to enlarged photoresponsive range and increase in charge separation rate. From the results, we suggest an attractive physical property and an efficient and a recyclable nanocomposite catalyst active under UV light irradiation for use in wastewater treatment to control water pollution.



The authors are thankful to SAIF, IIT-Madras, Chennai for samples characterization.


  1. 1.
    E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri, Prog. Mater. Sci. 54, 1–67 (2009)CrossRefGoogle Scholar
  2. 2.
    N. Bayal, P. Jeevanandam, Mater. Res. Bull. 48, 3790–3799 (2013)CrossRefGoogle Scholar
  3. 3.
    Y. He, L. Zhang, M. Fan, X. Wang, M.L. Walbridge, Q. Nong, Y. Wu, L. Zhao, Sol. Energy Mater. Solid Cells 137, 175–184 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Ikehata, N.J. Naghashkar, M. Gamal El-Din, Ozone Sci. Eng. 28, 353–414 (2006)CrossRefGoogle Scholar
  5. 5.
    D. Singh, S. Verma, R.K. Gautam, V. Krishna, J. Environ. Chem. Eng. 3, 2161–2171 (2015)CrossRefGoogle Scholar
  6. 6.
    A. Sobhani-nasab, M. Behpour, M. Rahimi-nasrabadi, F. Ahmadi, S. Pourmasoud, F. Sedighi, Ultrason. Sonochem. 50, 46–58 (2019)CrossRefGoogle Scholar
  7. 7.
    A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Mater. Lett. 238, 159–162 (2019)CrossRefGoogle Scholar
  8. 8.
    H. Kooshki, A. Sobhani-nasab, M. Eghbali-arani, F. Ahmadi, V. Ameri, M. Rahimi-nasrabadi, Sep. Purif. Technol. 211, 873–881 (2018)CrossRefGoogle Scholar
  9. 9.
    F. Sedighi, M. Esmaeili, Z. Ali, S. Nasab, M. Behpour, J. Mater. Sci. 29(16), 13737–13745 (2018)Google Scholar
  10. 10.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, FarhadGoogle Scholar
  11. 11.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci. 28(21), 16459–16466 (2017)Google Scholar
  12. 12.
    S.W. Cao, Y.J. Zhu, M.Y. Ma, L. Li, L. Zhang, J. Phys. Chem. C 112, 1851 (2008)CrossRefGoogle Scholar
  13. 13.
    Y.F. Zhu, W.R. Zhao, H.R. Chen, J.L. Shi, J. Phys. Chem. C 111, 5281 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Josephson, C.H. Tsung, A. Moore, R. Weissleder, Bioconjugate Chem. 10, 186 (1999)CrossRefGoogle Scholar
  15. 15.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, J. Electron. Mater. 47(7), 3757–3769 (2018)CrossRefGoogle Scholar
  16. 16.
    P.V. Kamat, J. Phys. Chem. C 111, 2834–2860 (2007)CrossRefGoogle Scholar
  17. 17.
    Z.W. Chen, Z. Jiao, M.H. Wu, C.H. Shek, C.M.L. Wu, J.K.L. Lai, Prog. Mater. Sci. 56, 901–1029 (2011)CrossRefGoogle Scholar
  18. 18.
    M. Batzill, U. Diebold, Prog. Mater. Sci. 79, 47–154 (2005)Google Scholar
  19. 19.
    Y. Han, X. Wu, Y. Ma, L. Gong, F. Qu, H. Fan, Cryst. Eng. Commun. 13, 3506–3510 (2011)CrossRefGoogle Scholar
  20. 20.
    D. Chu, J. Mo, Q. Peng, Y. Zhang, Y. Wei, Z. Zhuang, Y. Li, ChemCatChem 3, 371–377 (2011)CrossRefGoogle Scholar
  21. 21.
    S. Wu, H. Cao, S. Yin, X. Liu, X. Zhang, J. Phys. Chem. C 113, 17893–17898 (2009)CrossRefGoogle Scholar
  22. 22.
    T. Xin, M. Ma, H. Zhang, J. Gu, S. Wang, M. Liu, Q. Zhang, Appl. Surf. Sci. 288, 51–59 (2014)CrossRefGoogle Scholar
  23. 23.
    Z. Wang, Y. Du, F. Zhang, Z. Zheng, X. Zhang, Q. Feng, C. Wang, Mater. Chem. Phys. 140, 373–381 (2013)CrossRefGoogle Scholar
  24. 24.
    A.F. Shojaei, A. Shams-Nateri, M. Ghomashpasand, Superlattices Microstruct. 88, 211–224 (2015)CrossRefGoogle Scholar
  25. 25.
    Y.-W. Lu, Q.-S. Zhu, F.-X. Liu, Phys. Lett. A 359, 66–69 (2006)CrossRefGoogle Scholar
  26. 26.
    W.-W. Wang, J.-L. Yao, Mater. Res. Bull. 45, 710–716 (2010)CrossRefGoogle Scholar
  27. 27.
    W.-W. Wang, J.-L. Yao, J. Phys. Chem. C 113, 3070–3075 (2009)CrossRefGoogle Scholar
  28. 28.
    B.R. Sathe, P.S. Walke, I.S. Mulla, V.K. Pillai, Chem. Phys. Lett 493, 121–125 (2010)CrossRefGoogle Scholar
  29. 29.
    W.W. Wang, J.L. Yao, J. Phys. Chem. C 113, 3070–3075 (2009)CrossRefGoogle Scholar
  30. 30.
    H.L. Xia, H.S. Zhuang, T. Zhang, D.C. Xiao, Mater. Lett. 62, 1126 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Wang, S.P. Jiang, X. Wang, Electrochim. Acta 56, 3338–3344 (2011)CrossRefGoogle Scholar
  32. 32.
    R. Bhosale, R. Khadka, J. Puszynski, R. Shende, J. Renew. Sustain. Energy 3, 063104 (2011)CrossRefGoogle Scholar
  33. 33.
    Yasser K. Abdel-Monem, J. Mater. Sci.: 27, 5723–5728 (2016)Google Scholar
  34. 34.
    Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci. 28, 2923–2934 (2017)Google Scholar
  35. 35.
    M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Ind. Eng. Chem. Res. 55(50), 12733–12741 (2016)CrossRefGoogle Scholar
  36. 36.
    H.L. Xia, H.S. Zhuang, T. Zhang, D.C. Xiao, J. Environ. Sci. (China). 19(9), 1141–1145 (2007)CrossRefGoogle Scholar
  37. 37.
    H. Chen, M. Gu, X. Pu, J. Zhu, L. Cheng, Mater. Res. Exp. 3(6), 065002 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsLoyola CollegeChennaiIndia
  2. 2.Department of Nuclear PhysicsUniversity of MadrasChennaiIndia

Personalised recommendations