Detection of ultra-trace levels of insulin by Fe3O4@MoS2/rGO-GCE as a sensor based on isoelectric points

  • Nahid Askari
  • Amirkhosro Beheshti-Marnani
  • Mohammad Bagher AskariEmail author
  • Tahereh Rohani


A transition metal dichalcogenide (TMD) composite consisted of MoS2 coated magnetite nanoparticles, hybridized with reduced graphene oxide, loaded on the surface of a glassy carbon electrode (Fe3O4@MoS2/rGO-GCE) was applied for detection of trace amounts of in vitro insulin based on isoelectric points of the modifier and the insulin. The nanocomposite was characterized by X-ray diffraction (XRD), energy dispersive X-Ray analysis (EDX), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Differential pulse voltammetry (DPV) was applied for quantitative analysis of insulin and a wide linear range of insulin concentration (10–1800 nM) was obtained along with good linearity (r2 = 0.992), significant limit of detection (5.4 nM) and grate reproducibility (RSD% = 2.03). Based on our knowledge, it is the first report for detection of insulin as a bio-macromolecule in partnership with a composite of transition metal dichalcogenides.



  1. 1.
    D.R. Bhumkar, H.M. Joshi, M. Sastry, V.B. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res. 24(8), 1415–1426 (2007)CrossRefGoogle Scholar
  2. 2.
    Buse JB, Kaufman FR, Linder B, Hirst K, Willi S, HEALTHY Study Group, Diabetes screening with hemoglobin A1c versus fasting plasma glucose in a multiethnic middle-school cohort. Diab. Care. 36(2), 429–435 (2013)CrossRefGoogle Scholar
  3. 3.
    Y.H. Wang, K.J. Huang, X. Wu, Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens. Bioelectron. 15(97), 305–316 (2017)Google Scholar
  4. 4.
    K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D non-graphene materials and 2D oxide nanostructures for biosensing technology. Sensors 16(2), 223 (2016)CrossRefGoogle Scholar
  5. 5.
    C. Zhu, Z. Zeng, H. Li, F. Li, C. Fan, H. Zhang, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135(16), 5998–6001 (2013)CrossRefGoogle Scholar
  6. 6.
    H. Li, Y. Li, A. Aljarb, Y. Shi, L.J. Li, Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118(13), 6134–6150 (2017)CrossRefGoogle Scholar
  7. 7.
    S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898–2926 (2013)CrossRefGoogle Scholar
  8. 8.
    J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Func. Mater. 27(19), 1605817 (2017)CrossRefGoogle Scholar
  9. 9.
    C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015)CrossRefGoogle Scholar
  10. 10.
    K. Pramoda, K. Moses, U. Maitra, C.N. Rao, Superior performance of a MoS2-RGO composite and a borocarbonitride in the electrochemical detection of dopamine. Uric Acid Adenine Electroanal. 27(8), 1892–1898 (2015)CrossRefGoogle Scholar
  11. 11.
    V. Mani, M. Govindasamy, S.M. Chen, R. Karthik, S.T. Huang, Determination of dopamine using a glassy carbon electrode modified with a graphene and carbon nanotube hybrid decorated with molybdenum disulfide flowers. Microchim. Acta 183(7), 2267–2275 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Kaushik, R. Khan, P.R. Solanki, P. Pandey, J. Alam, S. Ahmad, B.D. Malhotra, Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens. Bioelectron. 24(4), 676–683 (2008)CrossRefGoogle Scholar
  13. 13.
    Y.H. Xie, R. Zhen, B. Wang, Y.J. Feng, P. Chen, J. Hao, Fe3O4/Au Core/Shell nanoparticles modified with Ni2+-Nitrilotriacetic acid specific to histidine-tagged proteins. J. Phys. Chem. C 114(11), 4825–4830 (2010)CrossRefGoogle Scholar
  14. 14.
    X. Sun, C. Zheng, F. Zhang, Y. Yang, G. Wu, A. Yu, N. Guan, Size-controlled synthesis of magnetite (Fe3O4) nanoparticles coated with glucose and gluconic acid from a single Fe(III) precursor by a sucrose bifunctional hydrothermal method. J. Phys. Chem. C. 113(36), 16002–16008 (2009)CrossRefGoogle Scholar
  15. 15.
    A. Güner, E. Çevik, M. Şenel, L. Alpsoy, An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 by using chitosan, MWCNT, polypyrrole with gold nanoparticles hybrid sensing platform. Food Chem. 15(229), 358–365 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Li, L. Fang, P. Cheng, J. Deng, L. Jiang, H. Huang, J. Zheng, An electrochemical immunosensor for sensitive detection of Escherichia coli O157: H7 using C60 based biocompatible platform and enzyme functionalized Pt nanochains tracing tag. Biosens. Bioelectron. 15(49), 485–491 (2013)CrossRefGoogle Scholar
  17. 17.
    H.J. Song, S. You, X.H. Jia, J. Yang, MoS2 nanosheets decorated with magnetic Fe3O4 nanoparticles and their ultrafast adsorption for wastewater treatment. Ceram. Int. 41(10), 13896–13902 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, P. Chen, F. Wen, B. Yuan, H. Wang, Fe3O4 nanospheres on MoS2 nanoflake: electrocatalysis and detection of Cr(VI) and nitrite. J. Electroanal. Chem. 15(761), 14–20 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Cheng, B. He, L. Zhou, A general one-step approach for in situ decoration of MoS 2 nanosheets with inorganic nanoparticles. J. Mater. Chem. A 3(3), 1042–1048 (2015)CrossRefGoogle Scholar
  20. 20.
    L. Ma, S.M. Islam, H. Liu, J. Zhao, G. Sun, H. Li, S. Ma, M.G. Kanatzidis, Selective and efficient removal of toxic oxoanions of As (III), As (V), and Cr(VI) by layered double hydroxide intercalated with MoS42–. Chem. Mater. 29(7), 3274–3284 (2017)CrossRefGoogle Scholar
  21. 21.
    Y. Gao, C. Chen, X. Tan, H. Xu, K. Zhu, Polyaniline-modified 3D-flower-like molybdenum disulfide composite for efficient adsorption/photocatalytic reduction of Cr(VI). J. Colloid Interface Sci. 15(476), 62–70 (2016)CrossRefGoogle Scholar
  22. 22.
    M. Kosmulski, Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv. Coll. Interface. Sci. 152(1–2), 14–25 (2009)CrossRefGoogle Scholar
  23. 23.
    A.S. Krishna Kumar, S.J. Jiang, J.K. Warchoł, Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega 2(9), 6187–6200 (2017)CrossRefGoogle Scholar
  24. 24.
    N. Selvakumar, U. Pradhan, S.B. Krupanidhi, H.C. Barshilia, Structural and optical properties of graphene oxide prepared by modified hummers’ method. CMC 52(3), 175–185 (2016)Google Scholar
  25. 25.
    M. Mazloum-Ardakani, A. Khoshroo, Nano composite system based on coumarin derivative–titanium dioxide nanoparticles and ionic liquid: determination of levodopa and carbidopa in human serum and pharmaceutical formulations. Anal. Chim. Acta 10(798), 25–32 (2013)CrossRefGoogle Scholar
  26. 26.
    C. Hsu, D.J. Lee, J.P. Hsu, N. Wang, S. Tseng, Electrophoresis of pH-regulated particles in the presence of multiple ionic species. AIChE J. 60(2), 451–458 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Pikulski, W. Gorski, Iridium-based electrocatalytic systems for the determination of insulin. Anal. Chem. 72(13), 2696–2702 (2000)CrossRefGoogle Scholar
  28. 28.
    J. Wang, X. Zhang, Needle-type dual microsensor for the simultaneous monitoring of glucose and insulin. Anal. Chem. 73(4), 844–847 (2001)CrossRefGoogle Scholar
  29. 29.
    Y. Lin, L. Hu, L. Li, K. Wang, Facile synthesis of nickel hydroxide–graphene nanocomposites for insulin detection with enhanced electro-oxidation properties. RSC Adv. 4(86), 46208–46213 (2014)CrossRefGoogle Scholar
  30. 30.
    V. Singh, S. Krishnan, Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes. Anal. Chem. 87(5), 2648–2654 (2015)CrossRefGoogle Scholar
  31. 31.
    A. Arvinte, A.C. Westermann, A.M. Sesay, V. Virtanen, Electrocatalytic oxidation and determination of insulin at CNT-nickel–cobalt oxide modified electrode. Sens. Actuators B 150(2), 756–763 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nahid Askari
    • 1
  • Amirkhosro Beheshti-Marnani
    • 2
  • Mohammad Bagher Askari
    • 3
    • 4
    Email author
  • Tahereh Rohani
    • 2
  1. 1.Department of Biotechnology, Institute of Sciences and High Technology and Environmental SciencesGraduate University of Advanced TechnologyKermanIran
  2. 2.Department of ChemistryPayame Noor University (PNU)TehranIran
  3. 3.Department of Physics, Faculty of SciencesUniversity of GuilanRashtIran
  4. 4.Department of PhysicsPayame Noor University (PNU)TehranIran

Personalised recommendations