A Pb(Zr,Ti)O3–Pb(Zn1/3Nb2/3)O3–Bi(Mn2/3Sb1/3)O3 quaternary solid solution ceramic with low sintering temperature, high piezoelectric coefficient and large mechanical quality factor

  • Tingwei Huang
  • Jian Fu
  • Ruzhong ZuoEmail author


A quaternary high-power piezoelectric ceramic of 0.9Pb(ZrxTi1−x)O3–0.06Pb(Zn1/3Nb2/3)O3–0.04Bi(Mn2/3Sb1/3)O3 + y mol% Fe2O3 (x = 0.45–0.53) was reported to exhibit excellent overall properties of \({{\varepsilon_{33}^{T} } \mathord{\left/ {\vphantom {{\varepsilon_{33}^{T} } {\varepsilon_{0} }}} \right. \kern-0pt} {\varepsilon_{0} }} = 1615\), d33 = 305 pC/N, kp = 0.56, Qm = 1678, and Tc = 302 °C at x = 0.48 and y = 0.7 as sintered at 1040 °C. The relevant mechanism was ascribed to the combined effect of the formation of a traditional morphotropic phase boundary, the low-temperature sintering and amphoteric role of Bi(Mn2/3Sb1/3)O3 and the modification of Fe2O3 doping. The results demonstrate that Bi-based complex perovskite Bi(Mn2/3Sb1/3)O3 can simultaneously provide soft and hard characteristics similar to traditional Pb(Mn1/3Sb2/3)O3 and Pb(Mn1/3Nb2/3)O3. The addition of a small amount of Fe3O3 was found to have an obvious effect on the densification behavior and grain growth, and to simultaneously promote the piezoelectric properties and quality factor Qm as y ˂ 0.9. Compared with traditional piezoelectric ceramics, low-sintering temperature and excellent piezoelectric properties indicate that the studied composition in current work could have potentials for low-cost high-power device applications.



This work was supported by the National Natural Science Foundation of China (Grant No. 51472069).


  1. 1.
    Y.K. Yan, K.H. Cho, S. Priya, J. Am. Ceram. Soc. 94, 4138 (2011)CrossRefGoogle Scholar
  2. 2.
    M.K. Zhu, P.X. Lu, Y.D. Hou, H. Wang, J. Mater. Res. 20, 2670 (2005)CrossRefGoogle Scholar
  3. 3.
    Y.D. Hou, M.K. Zhu, H. Wang, B. Wang, H. Yan, C.S. Tian, Mater. Lett. 58, 1508 (2004)CrossRefGoogle Scholar
  4. 4.
    Z.G. Zhu, G.R. Li, Z.J. Xu, W.Z. Zhang, Q.R. Yin, J. Phys. D Appl. Phys. 38, 1464 (2005)CrossRefGoogle Scholar
  5. 5.
    Z.P. Yang, X.M. Zong, H. Li, Y.F. Chang, Mater. Lett. 59, 3476 (2005)CrossRefGoogle Scholar
  6. 6.
    A. Prasatkhetragarm, R. Yimnirun, Ceram. Int. 39, S91 (2013)CrossRefGoogle Scholar
  7. 7.
    V. Kalem, M. Timucin, J. Eur. Ceram. Soc. 33, 105 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Kobune, H. Okuda, H. Nishioka, T. Kikuchi, Jpn. J. Appl. Phys. 52, 09KD10 (2013)CrossRefGoogle Scholar
  9. 9.
    D.W. Wang, M.S. Cao, Q.L. Zhao, Y. Cui, S.J. Zhang, Phys. Status Solidi R 7, 221 (2013)CrossRefGoogle Scholar
  10. 10.
    Y. Li, D.W. Wang, W.Q. Cao, B. Li, J. Yuan, D.Q. Zhang, S.J. Zhang, M.S. Cao, Ceram. Int. 41, 9647 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Priya, H.W. Kim, K. Uchino, J. Am. Ceram. Soc. 87, 1907 (2004)CrossRefGoogle Scholar
  12. 12.
    C.C. Tsai, S.Y. Chu, C.S. Hong, S.F. Chen, J. Eur. Ceram. Soc. 31, 2013 (2011)CrossRefGoogle Scholar
  13. 13.
    S.Y. Yoo, J.Y. Ha, S.J. Yoon, J.W. Choi, J. Eur. Ceram. Soc. 33, 1769 (2013)CrossRefGoogle Scholar
  14. 14.
    D.I. Woodward, I.M. Reaney, R.E. Eitel, C.A. Randall, J. Appl. Phys. 94, 3313 (2003)CrossRefGoogle Scholar
  15. 15.
    C.A. Randall, R. Eitel, B. Jones, T.R. Shrout, D.I. Woodward, I.M. Reaney, J. Appl. Phys. 95, 3633 (2004)CrossRefGoogle Scholar
  16. 16.
    T.T. Zou, X.H. Wang, H. Wang, C.F. Zhong, L.T. Li, I.W. Chen, Appl. Phys. Lett. 93, 192913 (2008)CrossRefGoogle Scholar
  17. 17.
    B. Zhang, H. Qi, R.Z. Zuo, Ceram. Int. 44, 5453 (2018)CrossRefGoogle Scholar
  18. 18.
    Z. Gui, H. Hu, L. Li, X. Zhang, Solid State Phenom. 25–26, 309 (1992)CrossRefGoogle Scholar
  19. 19.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  20. 20.
    H. Frayssignes, M. Gabbay, G. Fantozzi, N.J. Porch, B.L. Cheng, T.W. Button, J. Eur. Ceram. Soc. 24, 2989 (2004)CrossRefGoogle Scholar
  21. 21.
    J. Fu, R.Z. Zuo, Acta Mater. 61, 3687 (2013)CrossRefGoogle Scholar
  22. 22.
    H.F. Yi, R.Z. Zuo, J. Am. Ceram. Soc. 97, 1912 (2014)CrossRefGoogle Scholar
  23. 23.
    X.L. Chao, D.F. Ma, R. Gu, Z.P. Yang, J. Alloys Compd. 491, 698 (2010)CrossRefGoogle Scholar
  24. 24.
    C.C. Tsai, S.-Y. Chu, C.-H. Lu, I.E.E.E. Trans, Ultrason. Ferroelectr. Freq. Control 56, 660 (2009)Google Scholar
  25. 25.
    F. Gao, L.H. Cheng, R.Z. Hong, J. Liu, C.J. Wang, C.S. Tian, Ceram. Int. 35, 1719 (2009)CrossRefGoogle Scholar
  26. 26.
    H. Li, Z.P. Yang, L.L. Wei, Y.F. Chang, Mater. Res. Bull. 44, 638 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Electro Ceramics & Devices, School of Materials Science and EngineeringHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations