Impact of ZnO addition on structural, morphological, optical, dielectric and electrical performances of BaTiO3 ceramics

  • Y. SlimaniEmail author
  • A. Selmi
  • E. HannachiEmail author
  • M. A. Almessiere
  • A. Baykal
  • I. Ercan


BaTiO3/(ZnO)x ceramics (x = 0, 2, 5 and 10 wt%) were produced via solid state reaction by using high energy ball milling. The morphological, structural, spectral, optical, electrical and dielectric properties were systematically investigated. X-ray diffraction indicated that all ceramics crystallize in the tetragonal structure. The grains size increases with ZnO additions. The optical band gap energy (Eg) was also evaluated and found to reduce with increasing ZnO concentration. The dielectric and electric properties revealed that an optimal ZnO content lead to obtain ceramic with high dielectric constant and low tangent loss, which are encouraging for radio frequencies and microwaves applications.



The authors highly acknowledged the supports of the Institute for Research & Medical Consultations (Projects application No. 2017-IRMC-S-3, No. 2017-576-IRMC and No. 2018-IRMC-S-2) of Imam Abdulrahman Bin Faisal University (IAU—Saudi Arabia).


  1. 1.
    L. Xiaochi, W. Bian, Y. Li, H. Zhu, F. Zhenxiao, Q. Zhang, Influence of inverse spinel structured CuGa2O4 on microwave dielectric properties of normal spinel ZnGa2O4 ceramics. J. Am. Ceram. Soc. 101, 1646–1654 (2018)CrossRefGoogle Scholar
  2. 2.
    L. Xiaochi, W. Bian, C. Min, F. Zhenxiao, Q. Zhang, H. Zhu, Cation distribution of high-performance Mn-substituted ZnGa2O4 microwave dielectric ceramics. Ceram. Int. 44, 10028–10034 (2018)CrossRefGoogle Scholar
  3. 3.
    C.D. Chandler, C. Roger, M.J. Hampdensmith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors. Chem. Rev. 93, 1205–1241 (1993)CrossRefGoogle Scholar
  4. 4.
    M.A. Pena, J.L.G. Fierro, Chemical structures and performance of perovskite oxides. Chem. Rev. 101, 1981–2017 (2001)CrossRefGoogle Scholar
  5. 5.
    J. Harada, T. Pedersen, Z. Barnea, X-Ray and neutron diffraction study of tetragonal barium titanate. Acta Crystall. a-Crys. A 26, 336 (1970)CrossRefGoogle Scholar
  6. 6.
    F.I.H. Rhouma, A. Dhahri, J. Dhahri, H. Belmabrouk, M.A. Valente, Structural and dielectric properties of Ba0.8La0.133Ti0.90Sn0.1O3. Solid State Commun. 152, 1874–1879 (2012)CrossRefGoogle Scholar
  7. 7.
    M.Z.C. Hu, G.A. Miller, E.A. Payzant, C.J. Rawn, Homogeneous (co)precipitation of inorganic salts for synthesis of monodispersed barium titanate particles. J. Mater. Sci. 35, 2927–2936 (2000)CrossRefGoogle Scholar
  8. 8.
    S. Dudley, T. Kalem, M. Akinc, Conversion of SiO2 diatom frustules to BaTiO3 and SrTiO3. J. Am. Ceram. Soc. 89, 2434–2439 (2006)CrossRefGoogle Scholar
  9. 9.
    V. Paunovic, L. Zivkovic, Influence of Rare-earth additives (La, Sm and Dy) on the microstructure and dielectric properties of doped BaTiO3 ceramics. Sci. Sinter. 42, 69–79 (2010)CrossRefGoogle Scholar
  10. 10.
    H.A. Moghaddam, M.R. Mohammadi, TiO2-BaTiO3 nanocomposite for electron capture in dye-sensitized solar cells. J. Am. Ceram. Soc. 100, 2144–2153 (2017)CrossRefGoogle Scholar
  11. 11.
    H.A. Moghaddam, M.R. Mohammadi, S.M.S. Reyhani, Improved photon to current conversion in nanostructured TiO2 dye-sensitized solar cells by incorporating cubic BaTiO3 particles deliting incident. Sol. Energy 132, 1–14 (2016)CrossRefGoogle Scholar
  12. 12.
    Y.M. Zhang, M.H. Cao, Z.H. Yao, Z.J. Wang, Z. Song, A. Ullah, H. Hao, H.X. Liu, Effects of silica coating on the microstructures and energy storage properties of BaTiO3 ceramics. Mater. Res. Bull. 67, 70–76 (2015)CrossRefGoogle Scholar
  13. 13.
    W.H. Tzing, W.H. Tuan, H.L. Lin, The effect of microstructure on the electrical properties of NiO-doped BaTiO3. Ceram. Int. 25, 425–430 (1999)CrossRefGoogle Scholar
  14. 14.
    T. Nagai, K. Iijima, H.J. Hwang, M. Sando, T. Sekino, K. Niihara, Effect of MgO doping on the phase transformations of BaTiO3. J. Am. Ceram. Soc. 83, 107–112 (2000)CrossRefGoogle Scholar
  15. 15.
    Y. Sakabe, N. Wada, T. Hiramatsu, T. Tonogaki, Dielectric properties of fine-grained BaTiO3 ceramics doped with CaO. Jpn. J. Appl. Phys. 41, 6922–6925 (2002)CrossRefGoogle Scholar
  16. 16.
    Y.H. Song, J.H. Hwang, Y.H. Han, Effects of Y2O3 on temperature stability of acceptor-doped BaTiO3. Jpn. J. Appl. Phys. 44, 1310–1313 (2005)CrossRefGoogle Scholar
  17. 17.
    R. Saravanan, V.K. Gupta, E. Mosquera, F. Gracia, Preparation and characterization of V2O5/ZnO nanocomposite system for photocatalytic application. J. Mol. Liq. 198, 409–412 (2014)CrossRefGoogle Scholar
  18. 18.
    A.M. Al-syadi, V.K. Gupta, E. Mosquera, M.M. El-Desoky, M.S. Al-Assiri, Impedance spectroscopy of V2O5–Bi2O3–BaTiO3 glass–ceramics. Solid State Sci. 26, 72–82 (2014)CrossRefGoogle Scholar
  19. 19.
    N. Zhang, L. Li, J. Chen, J. Yu, ZnO-doped BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-based ceramics with temperature-stable high permittivity from − 55 °C to 375 °C. Mater. Lett. 138, 228–230 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Wang, X. Wei, Q. Hu, L. Jin, Z. Xu, Y. Feng, Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B 178, 1081–1086 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Yan, C. Ning, Z. Jin, H. Qin, W. Luo, G. Liu, The dielectric properties and microstructure of BaTiO3 ceramics with ZnO–Nb2O5 composite addition. J. Alloys. Compd. 646, 748–752 (2015)CrossRefGoogle Scholar
  22. 22.
    Q.K. Muhammad, M. Waqar, M.A. Rafiq, M.N. Rafiq, M. Usman, M.S. Anwar, Structural, dielectric, and impedance study of ZnO doped barium zirconium titanate (BZT) ceramics. J. Mater. Sci. 51, 10048–10058 (2016)CrossRefGoogle Scholar
  23. 23.
    Y. Iqbal, A. Jamal, The effect of Ta2O5- and ZnO-doping on the Curie temperature of BaTiO3. J. Phys 371, 012035 (2012)Google Scholar
  24. 24.
    A.C. Caballero, J.F. Fernández, C. Moure, P. Durán, Y.M. Chiang, Grain growth control and dopant distribution in ZnO-doped BaTiO3. J. Am. Ceram. Soc. 81, 939–944 (1998)CrossRefGoogle Scholar
  25. 25.
    M. Atif, S. Ahmed, M. Nadeem, M.K. Ali, M. Idrees, R. Grossinger, R.S. Turtelli, Role of competing phases in the structural, magnetic and dielectric relaxation for (1 − x)CoFe2O4 + (x)BaTiO3 composites. Ceram. Int. 42, 14618–14626 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Lather, A. Gupta, J. Dalal, V. Verma, R. Tripathi, A. Ohlan, Effect of mechanical milling on structural, dielectric and magnetic properties of BaTiO3-Ni0.5Co0.5Fe2O4 multiferroic nanocomposites. Ceram. Int. 43, 3246–3251 (2016)CrossRefGoogle Scholar
  27. 27.
    S. Kappadan, T.W. Gebreab, S. Thomas, N. Kalarikkal, Tetragonal BaTiO3 nanoparticles: an efficient photocatalyst for the degradation of organic pollutants. Mater. Sci. Semicond. Process 51, 42–47 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Yan, L. Liu, C. Ning, Y. Yang, C.J. Xia, Y.T. Zou, S.Y. Liu, X.X. Wang, K.H. Liu, X.K. Liu, G. Liu, Improved electrical properties of SiO2-added BaTiO3 ceramics by microwave sintering. Mater. Lett. 165, 135–138 (2016)CrossRefGoogle Scholar
  29. 29.
    Y. Slimani, H. Gungunes, M. Nawaz, A. Manikandan, H.S. El Sayed, M.A. Almessiere, H. Sozeri, S.E. Shirsath, I. Ercan, A. Baykal, Magneto-optical and microstructural properties of spinel cubic copper ferrites with Li-Al co-substitution. Ceram. Int. 44, 14242–14250 (2018)CrossRefGoogle Scholar
  30. 30.
    P.G. Wang, C.M. Fan, Y.W. Wang, G.Y. Ding, P.H. Yuan, A dual chelating sol-gel synthesis of BaTiO3 nanoparticles with effective photocatalytic activity for removing humic acid from water. Mater. Res. Bull. 48, 869–877 (2013)CrossRefGoogle Scholar
  31. 31.
    Z.A. Garmaroudi, M.R. Mohammadi, Design of TiO2 dye-sensitized solar cell photoanode electrodes with different microstructures and arrangement modes of the layers. J. Sol–Gel Sci. Techn. 76, 666–678 (2015)CrossRefGoogle Scholar
  32. 32.
    Y.C. Teh, A.A. Saif, Influence of annealing temperature on structural and optical properties of sol-gel derived Ba0.9Gd0.1TiO3 thin films for optoelectronics. J. Alloys. Compd. 703, 407–413 (2015)CrossRefGoogle Scholar
  33. 33.
    L.V. Maneeshya, P.V. Thomas, K. Joy, Effects of site substitutions and concentration on the structural, optical and visible photoluminescence properties of Er doped BaTiO3 thin films prepared by RF magnetron sputtering. Opt. Mater. 46, 304–309 (2015)CrossRefGoogle Scholar
  34. 34.
    T.G. Reddy, B.R. Kumar, T.S. Rao, J.A. Ahmad, Structural and dielectric properties of barium bismuth titanate (BaBi4Ti4O15) ceramics. Int. J. Appl. Eng. Res. 6, 571–580 (2011)Google Scholar
  35. 35.
    P. Jaita, A. Watcharapasorn, N. Kumar, D.P. Cann, S. Jiansirisomboon, Large electric field-induced strain and piezoelectric responses of lead-free Bi0.5(Na0.80K0.20)0.5TiO3-Ba(Ti0.90Sn0.10)O3 ceramics near morphotropic phase boundary. Electron. Mater. Lett. 11, 828–835 (2011)CrossRefGoogle Scholar
  36. 36.
    X.X. Dong, H.W. Chen, M. Wei, K.T. Wu, J.H. Zhang, Structure, dielectric and energy storage properties of BaTiO3 ceramics doped with YNbO4. J. Alloys. Compd. 744, 721–727 (2018)CrossRefGoogle Scholar
  37. 37.
    K. Kumari, A. Prasad, K. Prasad, Dielectric, Impedance/modulus and conductivity studies on [Bi0.5(Na1-xKx)0.5]0.94Ba0.06TiO3,[0.16 ≤ x ≤ 0.20] leadfree ceramics. Am. J. Mater. Sci. 6, 1–8 (2016)Google Scholar
  38. 38.
    A.K. Jonscher, The ‘universal’dielectric response. Nature 267, 673 (1977)CrossRefGoogle Scholar
  39. 39.
    L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.I. Lee, Y. Lee, Dielectric, AC-impedance, modulus studies on 0.5BaTiO3· 0.5CaCu3Ti4O12 nano-composite ceramic synthesized by one-pot, glycine-assisted nitrate-gel route. Ceram. Int. 40, 10073–10083 (2014)CrossRefGoogle Scholar
  40. 40.
    A. Rouahi, A. Kahouli, F. Challali, M.-P. Besland, C. Vallée, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, Impedance and electric modulus study of amorphous TiTaO thin films: highlight of the interphase effect. J. Phys. D 46, 065308 (2013)CrossRefGoogle Scholar
  41. 41.
    A. Selmi, O. Khaldi, M. Mascot, F. Jomni, J. Carru, Dielectric relaxations in Ba0.85Sr0.15TiO3 thin films deposited on Pt/Ti/SiO2/Si substrates by sol–gel method. J. Mater. Sci. 27, 11299–11307 (2016)Google Scholar
  42. 42.
    M. Sahu, S.K. Pradhan, S. Hajra, B.K. Panigrahi, R. Choudhary, Studies of structural, electrical, and excitation performance of electronic material: europium substituted 0.9(Bi0.5Na0.5TiO3)–0.1(PbZr0.48Ti0.52O3). Appl. Phys. A 125, 183 (2019)CrossRefGoogle Scholar
  43. 43.
    C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1−xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)CrossRefGoogle Scholar
  44. 44.
    R. Schmidt, S. Pandey, P. Fiorenza, D.C. Sinclair, Non-stoichiometry in “CaCu3Ti4O12” (CCTO) ceramics. RSC Adv. 3, 14580–14589 (2013)CrossRefGoogle Scholar
  45. 45.
    A. Rouahi, A. Kahouli, A. Sylvestre, E. Defay, B. Yangui, Impedance spectroscopic and dielectric analysis of Ba0.7Sr0.3TiO3 thin films. J. Alloys. Compd. 529, 84–88 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  2. 2.Laboratoire Matériaux Organisation et Propriétés (LMOP)Université de Tunis El ManarEl ManarTunisia
  3. 3.Laboratory of Physics of Materials - Structures and Properties, Department of Physics, Faculty of Sciences of BizerteUniversity of CarthageZarzounaTunisia
  4. 4.Department of Physics, College of ScienceImam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia
  5. 5.Department of Nano-Medicine Research, Institute for Research & Medical Consultations (IRMC)Imam Abdulrahman Bin Faisal UniversityDammamSaudi Arabia

Personalised recommendations