Advertisement

Bismuth perovskite as a viable alternative to Pb perovskite solar cells: device simulations to delineate critical efficiency dynamics

  • Michael Pham
  • Jalen Harris
  • Jon Shaffer
  • Abishai Daniel
  • Shaestagir Chowdhury
  • Aboubakr Ali
  • Sankha Banerjee
  • Saquib AhmedEmail author
Article
  • 149 Downloads

Abstract

We have simulated the operation and functionality of a working Bi-based perovskite solar cell device using GPVDM and compared it against a Pb-based device. The results are extremely promising in that they showcase comparable cell efficiencies, with the Bi-based device showing a highest 20.0% efficiency (Jsc of 256 A.m-2, Voc of 1.04 V, FF of 0.75) at 450 nm active layer thickness compared to 23.4% of its Pb counterpart (Jsc of 349.3 A.m-2, Voc of 0.81 V, FF of 0.83) at 850 nm active layer thickness. The Bi-based device can thus be manufactured at approximately half its Pb-counterpart active layer thickness, to give its optimal efficiency value. A deeper study of each of the Jsc, Voc and FF trends provide keen insight into charge transfer kinetics within the device, paving the way to optimal experimental setups for fabricating the most efficient non-toxic perovskite devices.

Notes

Acknowledgements

SA thanks the MME department at Portland State University for granting him the Visitor Scholar position to start work on the solar project.

Funding

This work was supported by the New York Clean Energy Grant from SUNY Buffalo State.

References

  1. 1.
    M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. PV Res. Appl. 23, 1 (2015)CrossRefGoogle Scholar
  2. 2.
    C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee, M. Gratzel, R. Noufi, T. Buonassisi, A. Salleo, M. McGehee, En.Env.Sci. 8, 956 (2015)Google Scholar
  3. 3.
    S. Albrecht, M. Saliba, J.P.C. Baena, F. Lang, L. Kegelmann, M. Mews, L. Steier, A. Abate, J. Rappich, L. Korte, R. Schlatmann, M.K. Nazeeruddin, A. Hagfeldt, M. Gratzel, B. Rech, En. & Env. Sci. 9, 81 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Kaltenbrunner, G. Adam, E.D. Glowacki, M. Drack, R. Schwodiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Nat. Mater. 14, 1032 (2015)CrossRefGoogle Scholar
  5. 5.
    A.D. Vos, J. Phys. D Appl. Phys. 13, 839 (1980)CrossRefGoogle Scholar
  6. 6.
    D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, Science 351, 151 (2016)CrossRefGoogle Scholar
  7. 7.
    J.B. You, Z.R. Hong, Y. Yang, Q. Chen, M. Cai, T.B. Song, C.C. Chen, S.R. Lu, Y.S. Liu, H.P. Zhou, Y. Yang, ACS Nano 8, 1674 (2014)CrossRefGoogle Scholar
  8. 8.
    B. Chen, M. Yang, S. Priya, K. Zhu, Phys. Chem. Lett. 7, 905 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Dong, H. Fan, J. Shi, Q. Li, J. Am. Ceram. Soc. 101, 3947 (2018)CrossRefGoogle Scholar
  10. 10.
    Q. Chang, H. Fan, C. Long, Journal of Materials Science 28, 4637 (2017)Google Scholar
  11. 11.
    N. Zhao, H. Fan, L. Ning, J. Ma, Y. Zhou, J. Am. Ceram. Soc. 101, 5578 (2018)CrossRefGoogle Scholar
  12. 12.
    X. Ren, H. Fan, Y. Zhao, Z. Liu, ACS Appl. Mater. Interfaces. 8, 26190 (2016)CrossRefGoogle Scholar
  13. 13.
    GPVDM http://gpvdm.com (accessed 24 December 2018)
  14. 14.
    R.C.I. MacKenzie, T. Kirchartz, G.F.A. Dibb, J. Nelson, J. Phys. Chem. C 115, 9806 (2011)CrossRefGoogle Scholar
  15. 15.
    R. Hanfland, M.A. Fischer, W. Brütting, U. Würfel, R.C.I. MacKenzie, Appl. Phys. Lett. 063904, 103 (2013)Google Scholar
  16. 16.
    F. Deschler, D. Riedel, B. Ecker, E. von Hauff, E. Da Como, R.C.I. MacKenzie, Phys. Chem. Chem. Phys. 15, 764 (2012)CrossRefGoogle Scholar
  17. 17.
    R.C.I. MacKenzie, C.G. Shuttle, M.L. Chabinyc, J. Nelson, Adv. Energy Mater. 2, 662 (2012)CrossRefGoogle Scholar
  18. 18.
    H. Du, W. Wang, & J. Zhu, Chinese Physics B 25, 108802/1 (2016)Google Scholar
  19. 19.
    K. Eckhardt, V. Bon, J. Getzschmann, J. Grothe, F. Wisser, S. Kaskel, ChemComm 52, 3058 (2016)Google Scholar
  20. 20.
    S. Sun, S. Tominaka, J.-H. Lee, F. Xie, P.D. Bristowe, A.K. Cheetham, APL Materials 4, 031101 (2016)CrossRefGoogle Scholar
  21. 21.
    J.K. Pious, M.L. Lekshmi, C. Muthu, R.B. Rakhi, V.C. Nair, ACS Omega 2, 5798 (2017)CrossRefGoogle Scholar
  22. 22.
    Z. Zhang, X. Li, X. Xia, Z. Wang, Z. Huang, B. Lei, Y. Gao, ACS – JPCL 8, 4300 (2017)Google Scholar
  23. 23.
    H. Wang, J. Tian, K. Jiang, Y. Zhang, H. Fan, J. Huang, L. Yang, B. Guan, Y. Song, RSC Adv. 7, 43826 (2017)CrossRefGoogle Scholar
  24. 24.
    M. Lyu, J-H Yun, M. Cai, Y. Jiao, P.V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, L. Wang, Nano Research (2015)  https://doi.org/10.1007/s12274-015-0948-y
  25. 25.
    Z. Xiao, Y. Zhou, H. Hosono, T. Kamiya, N.P. Padture, Chem. Eur. J. 24, 2305 (2018)CrossRefGoogle Scholar
  26. 26.
    N.C. Miller, M. Bernechea, APL Mater. 6, 084503 (2018)CrossRefGoogle Scholar
  27. 27.
    R. Teimouri, R. Mohammadpour, Superlattices Microstruct. 118, 116 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Ganose, C.N. Savory, D.O. Scanlon, ChemCommun. 53, 20 (2017)Google Scholar
  29. 29.
    J.M. Ball et al., Energy Environ. Sci. 8, 602 (2014)CrossRefGoogle Scholar
  30. 30.
    S. Ahmed S., A. Du Pasquier, T. Asefa, D.P. Birnie III, Advanced Energy Materials 1, 879 (2011)Google Scholar
  31. 31.
    S. Ahmed, A. Du Pasquier, D. P. Birnie III, T. Asefa, ACS – Applied Materials and Interfaces 3, 3002 (2011)Google Scholar
  32. 32.
    H.J. Snaith, L. Schmidt-Mende, M. Grätzel, M. Chiesa, Phys. Rev. B 74, 045306 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Michael Pham
    • 1
  • Jalen Harris
    • 5
  • Jon Shaffer
    • 1
  • Abishai Daniel
    • 2
  • Shaestagir Chowdhury
    • 3
  • Aboubakr Ali
    • 4
  • Sankha Banerjee
    • 5
  • Saquib Ahmed
    • 1
    Email author
  1. 1.Department of Mechanical Engineering Technology, SUNY - Buffalo StateBuffaloUSA
  2. 2.Individual ContributorPortlandUSA
  3. 3.Department of Mechanical and Materials EngineeringPortland State UniversityPortlandUSA
  4. 4.Center for Advanced Materials, Qatar UniversityDohaQatar
  5. 5.Department of Mechanical EngineeringCalifornia State UniversityFresnoUSA

Personalised recommendations