Effect of alloying Au on the microstructural, mechanical and electrical properties of Ag-based alloy wires

  • Bing-Hau Kuo
  • Du-Cheng Tsai
  • Yen-Lin Huang
  • Po-Chun Hsu
  • Tung-Han Chuang
  • Jun-Der Lee
  • Hsing-Hua Tsai
  • Fuh-Sheng ShieuEmail author


In this study, the microstructure and performance of different Ag-based conductive wires were investigated. Ag-based wires that contain 8, 15, 20, and 28 wt% Au were produced by multiple drawing and rapid annealing processes to substitute commercial gold wires in electronic packaging industries. The cross-sectional gain structures observed using focused ion beam showed the formation of a slender granular structure at the center, and the outer portion changed from equiaxed to elongated grains with the increase in Au content. High-resolution transmission electron microscopy showed a remarkable decrease in the twin thickness and stacking defect of 9R structures dissociated from incoherent twin boundaries. Electron backscatter diffraction analysis revealed that slender grains at the center showed strong < 001 > crystallographic orientation, and the equiaxed grains near the surface were in the < 111 > preferred orientation. The high Au solute concentration in Ag-based wires induced strong interaction on dislocations, thereby resulting in the formation of low-angle grain boundaries (LAGBs) and nano-twins. Ternary Ag-based alloy wires exhibited high strength and hardness but low conductivity and elongation with the increase in Au content because relatively the high LAGB density and Au solute atoms caused strengthening and electron scattering.



This work is supported in part by the Ministry of Education, Taiwan, R.O.C. under the Higher Education Sprout Project and the Wire Technology Co. Ltd., Taichung, Taiwan.


  1. 1.
    P.S. Chauhan, A. Choubey, Z. Zhong, M.G. Pecht, Copper Wire Bonding (Springer, NewYork, 2014)CrossRefGoogle Scholar
  2. 2.
    A. Bhattacharyya, D. Rittel, G. Ravichandran, Effect of strain rate on deformation texture in OFHC copper. Scr. Mater. 52, 657–661 (2005)CrossRefGoogle Scholar
  3. 3.
    K.S. Goh, Z.W. Zhong, A new bonding-tool solution to improve stitch bondability. Microelectron. Eng. 84, 173–179 (2007)CrossRefGoogle Scholar
  4. 4.
    T.H. Chuang, H.C. Wang, C.H. Tsai, C.C. Chang, C.H. Chuang, J.D. Lee, H.H. Tsai, Thermal stability of grain structure and material properties in an annealing-twinned Ag–8Au–3Pd alloy wire. Scr. Mater. 67, 605–608 (2012)CrossRefGoogle Scholar
  5. 5.
    T.H. Chuang, H.C. Wang, C.H. Chuang, J.-D. Lee, H.H. Tsai, Effect of annealing twins on electromigration in Ag-8Au-3Pd bonding wires. J. Electron. Mater. 42, 545–551 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Lu, Y. Shen, X. Chen, L. Qian, K. Lu, Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004)CrossRefGoogle Scholar
  7. 7.
    K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, K. Tu, Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066–1069 (2008)CrossRefGoogle Scholar
  8. 8.
    F. Rosalbino, S. Delsante, G. Borzone, G. Scavino, Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J. Mater. Sci. Mater. Med. 23, 1129–1137 (2012)CrossRefGoogle Scholar
  9. 9.
    J.D. Lee, H.H. Tsai, T.H. Chuang, Patent US8940403B2 (2012)Google Scholar
  10. 10.
    S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, Z.F. Zhang, Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586–1601 (2009)CrossRefGoogle Scholar
  11. 11.
    J.D. Rittner, D.N. Seidman, K.L. Merkle, Grain-boundary dissociation by the emission of stacking faults. Phys. Rev. B 53, R4241–R4244 (1996)CrossRefGoogle Scholar
  12. 12.
    J. Wang, O. Anderoglu, J. Hirth, A. Misra, X. Zhang, Dislocation structures of Σ3{112} twin boundaries in face centered cubic metals. Appl. Phys. Lett. 95, 021908 (2009)CrossRefGoogle Scholar
  13. 13.
    J. Wang, N. Li, O. Anderoglu, X. Zhang, A. Misra, J.Y. Huang, J.P. Hirth, Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater. 58(6), 2262–2270 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Wang, A. Misra, J.P. Hirth, Shear response of Σ3{112} twin boundaries in face-centered-cubic metals. Phys. Rev. B 83, 064106 (2011)CrossRefGoogle Scholar
  15. 15.
    J.R. Bowen, P.B. Prangnell, D. Juul Jensen, N. Hansen, Microstructural parameters and flow stress in Al–0.13% Mg deformed by ECAE processing. Mater. Sci. Eng. A 387–389, 235–239 (2004)CrossRefGoogle Scholar
  16. 16.
    F. Shen, D. Yi, B. Wang, H. Liu, Y. Jiang, C. Tang, B. Jiang, Semi-quantitative evaluation of texture components and anisotropy of the yield strength in 2524 T3 alloy sheets. Mater. Sci. Eng. A 675, 386–395 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Hirsch, K. Lücke, Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metall. 36, 2863–2882 (1988)CrossRefGoogle Scholar
  18. 18.
    W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)CrossRefGoogle Scholar
  19. 19.
    J.E. Bailey, P.B. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. A 5, 485–497 (1960)CrossRefGoogle Scholar
  20. 20.
    N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealed. Acta Mater. 57, 4198–4208 (2009)CrossRefGoogle Scholar
  21. 21.
    R.L. Fleischer, Substitutional solution hardening. Acta Metall. 11, 203–209 (1963)CrossRefGoogle Scholar
  22. 22.
    R. Labusch, A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659–669 (1970)CrossRefGoogle Scholar
  23. 23.
    P. Jax, P. Kratochvil, P. Haasen, Solid solution hardening of gold and other fcc single crystals. Acta Metall. 18, 237–245 (1970)CrossRefGoogle Scholar
  24. 24.
    D. Ma, M. Friák, J. von Pezold, J. Neugebauer, D. Raabe, Ab initio study of compositional trends in solid solution strengthening in metals with low Peierls stresses. Acta Mater. 98, 367–376 (2015)CrossRefGoogle Scholar
  25. 25.
    K. Edalati, D. Akama, A. Nishio, S. Lee, Y. Yonenaga, J.M. Cubero-Sesin, Z. Horita, Influence of dislocation–solute atom interactions and stacking fault energy on grain size of single-phase alloys after severe plastic deformation using high-pressure torsion. Acta Mater. 69, 68–77 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Matthiessen, C. Vogt IV, On the influence of temperature on the electric conducting-power of alloys. Philos. Trans. R. Soc. Lond. 154, 167–200 (1864)CrossRefGoogle Scholar
  27. 27.
    J.P. Hou, R. Li, Q. Wang, H.Y. Yu, Z.J. Zhang, Q.Y. Chen, H. Ma, X.M. Wu, X.W. Li, Z.F. Zhang, Breaking the trade-off relation of strength and electrical conductivity in pure Al wire by controlling texture and grain boundary. J. Alloys Compd. 769, 96–109 (2018)CrossRefGoogle Scholar
  28. 28.
    X.M. Luo, Z.M. Song, M.L. Li, Q. Wang, G.P. Zhang, Microstructural evolution and service performance of cold-drawn pure aluminum conductor wires. J. Mater. Sci. Technol. 33, 1039–1043 (2017)CrossRefGoogle Scholar
  29. 29.
    L. Nordheim, Zur elektronentheorie der metalle. i. Ann. Phys. 401, 607–640 (1931)CrossRefGoogle Scholar
  30. 30.
    I. Nakamichi, Electrical resistivity and grain boundaries in metals. Mater. Sci. Forum 207–209, 47–58 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bing-Hau Kuo
    • 1
  • Du-Cheng Tsai
    • 1
  • Yen-Lin Huang
    • 1
  • Po-Chun Hsu
    • 2
  • Tung-Han Chuang
    • 3
  • Jun-Der Lee
    • 4
  • Hsing-Hua Tsai
    • 4
  • Fuh-Sheng Shieu
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Department of Materials EngineeringKU LeuvenLouvainBelgium
  3. 3.Department of Materials Science and EngineeringNational Taiwan UniversityTaipeiTaiwan
  4. 4.Wire Technology Co. LtdTaichungTaiwan

Personalised recommendations