Advertisement

Au nanoparticles supported on Bi2WO6 nanosheets for broad-band absorption and good solar thermal conversion

  • Min Wang
  • Lingling Wang
  • Wei YuEmail author
  • Huaqing Xie
Article
  • 33 Downloads

Abstract

Photothermal conversion is one of the most effective ways of absorbing and utilizing solar energy. The key issues of photothermal conversion are seeking for nanofluids with strong and wide-range sunlight harvesting. In this work, near-infrared (NIR) light absorbed Bi2WO6 is first exploited for solar thermal conversion. However, the photothermal conversion efficiency is low owing to its insufficient NIR-light absorption. After coating Au nanoparticles on Bi2WO6 nanosheets, the localized surface plasmon resonance effect of Au nanoparticles enable Bi2WO6 show strong optical absorption. Au/Bi2WO6–H2O nanofluids have higher temperature rise and better photothermal conversion efficiency than Bi2WO6 and the base fluid water. The present work not only explore a new way for improving the photothermal conversion efficiency of NIR-light nanofluids, but also help design and prepare novel broad-band sunlight absorption nanofluids.

List of symbols

m

Mass of nanofluids (g)

Ti

The initial temperature (°C)

Δt

Illumination time (s)

G

The intensity of the solar light (W∙m−2)

λ

Wavelength (nm)

I(λ)

Spectral solar irradiance

α(λ)

Transmittance per unit wavelength

Ke

The extinction coefficient

l

Penetration distance (cm)

Cp

Specific heat (J/(kg × °C))

Tf

The instantaneous temperatures (°C)

d

Optical length (cm)

η

Photo-thermal conversion efficiency

A

Area exposed to solar irradiation (m2)

Am

Solar weighted absorption coefficient

T(λ)

Transmittance coefficient

I(λ)

The spectral solar irradiance

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51590901, and 51876112), Shanghai Municipal Natural Science Foundation (Grant No. 17ZR1411000), the Key Subject of Shanghai Polytechnic University (Material Science and engineering, XXKZD1601 and EGD18YJ0042), the Graduate Program Foundation of Shanghai Polytechnic University (Grant No. EGD18YJ0051), the Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering).

References

  1. 1.
    T. Takashima, T. Tanaka, T. Doi, J. Kamoshida, T. Tani, T. Horigome, Sol. Energy 52, 241 (1994)CrossRefGoogle Scholar
  2. 2.
    X. Zhang, X. Zhao, J. Shen, X. Hu, X. Liu, J. Xu, Sol. Energy 97, 551 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Jia, J. Wang, L. Zhu, J. Mater. Sci: Mater. Electron. (2018).  https://doi.org/10.1007/s10854-018-0477-z Google Scholar
  4. 4.
    P. Panneerselvam, V. Murugadoss, V. Elayappan, N. Lu, Z.H. Guo, S. Angaiah, ES Energy Environ. 1, 99 (2018)Google Scholar
  5. 5.
    B.F. Liu, Y.R. Jin, G.J. Xie, Z.J. Wang, H.Q. Wen, N.Q. Ren, D.F. Xing, ES Energy Environ. 1, 56 (2018)Google Scholar
  6. 6.
    T. Tanaka, Jpn. J. Appl. Phys. 18, 1153 (1979)CrossRefGoogle Scholar
  7. 7.
    N.S. Lewis, Science 351, aad1920 (2016)CrossRefGoogle Scholar
  8. 8.
    C.F. Xiao, H.L. Luo, R.S. Tang, Renew. Energy. 29, 1549 (2004)CrossRefGoogle Scholar
  9. 9.
    Y. Jian, Q. Falcoz, P. Neveu, F. Bai, Y. Wang, Z. Wang, Appl. Energy 139, 30 (2015)CrossRefGoogle Scholar
  10. 10.
    M.K. Gupta, S.C. Kaushik, Int. J. Energy Res. 33, 593 (2010)CrossRefGoogle Scholar
  11. 11.
    W. Liu, X. Zhang, L. Zhou, L. Shang, Z.Q. Su, J. Colloid. Interface Sci. 536, 160 (2019)CrossRefGoogle Scholar
  12. 12.
    J. Huang, Y.R. Lu, M.J. Chen, X.Z. Wang, Appl. Energy 236, 244 (2019)CrossRefGoogle Scholar
  13. 13.
    A.C. Beath, Energy 43, 261 (2012)CrossRefGoogle Scholar
  14. 14.
    W.X. Wu, W. Wu, S.F. Wang, Appl. Energy 236, 10 (2019)CrossRefGoogle Scholar
  15. 15.
    J.E. Minardi, H.N. Chuang, Sol. Energy 17, 179 (1975)CrossRefGoogle Scholar
  16. 16.
    R. Bertocchi, J. Karni, A. Kribus, Energy 29, 687 (2004)CrossRefGoogle Scholar
  17. 17.
    X.Z. Wang, Y.R. He, M.J. Chen, Y.W. Hu, Sol. Energy Mater. Sol. C 179, 185 (2017)CrossRefGoogle Scholar
  18. 18.
    T.B. Gorji, A.A. Ranjbar, Renew. Sustain. Energy Rev. 72, 10 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Khosrojerdi, A.M. Lavasani, M. Vakili, Sol. Energy Mater. Sol. C 164, 32 (2017)CrossRefGoogle Scholar
  20. 20.
    T.P. Otanicar, P.E. Phelan, R.S. Prasher, G. Rosengarten, R.A. Taylor, J. Renew. Sustain. Energy 2, 033102 (2010)CrossRefGoogle Scholar
  21. 21.
    H. Zhang, H.J. Chen, X. Du, D.S. Wen, G.P. Lin, Sol. Energy 100, 141 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Rativa, L.A. Gómez-Malagón, Sol. Energy 118, 419 (2015)CrossRefGoogle Scholar
  23. 23.
    B.J. Lee, K. Park, T. Walsh, L. Xu, J. Energy Eng. 134, 021009 (2012)CrossRefGoogle Scholar
  24. 24.
    Y.M. Xuan, H. Duan, Q. Li, RSC Adv. 4, 16206 (2014)CrossRefGoogle Scholar
  25. 25.
    T.N. And, M. Haase, J. Phys. Chem. B 104, 8430 (2000)CrossRefGoogle Scholar
  26. 26.
    J. Tian, Y. Sang, G. Yu, H. Jiang, X. Mu, H. Liu, Adv. Mater. 25, 5075 (2013)CrossRefGoogle Scholar
  27. 27.
    S.L. Lin, L. Liu, J.S. Hu, Y.H. Liang, W.Q. Cui, Appl. Surf. Sci. 324, 20 (2015)CrossRefGoogle Scholar
  28. 28.
    L. Liu, S. Ouyang, J. Ye, Angew. Chem. Int. Ed. 125, 6821 (2013)CrossRefGoogle Scholar
  29. 29.
    Y. Hu, R.C. Fleming, R.A. Drezek, Opt. Express 16, 19579 (2008)CrossRefGoogle Scholar
  30. 30.
    Y.T. Ren, Q. Chen, H. Qi, L.M. Ruan, ES Energy Environ. 3, 74 (2019)Google Scholar
  31. 31.
    L.L. Wang, G.H. Zhu, W. Yu, J. Zeng, X.X. Yu, Q. Li, H.Q. Xie, Sol. Energy Mater. Sol. C 184, 1 (2018)CrossRefGoogle Scholar
  32. 32.
    T. Bai, J. Sun, R. Che, L. Xu, C. Yin, ACS Appl. Mater. Interfaces 6, 3331 (2014)CrossRefGoogle Scholar
  33. 33.
    X. Zhang, J. Liu, D. Kou, W. Zhou, Z. Zhou, Sol. RRL 1, 1700151 (2017)CrossRefGoogle Scholar
  34. 34.
    N. Ortiz, B. Zoellner, S.J. Hong, Y. Ji, T. Wang, ACS Appl. Mater. Interfaces 9, 25962 (2017)CrossRefGoogle Scholar
  35. 35.
    Y.K. Dong, S. Kim, M.K. Yeo, I.G. Jung, M. Kang, Korean J. Chem. Eng. 26, 261 (2009)CrossRefGoogle Scholar
  36. 36.
    L.L. Wang, G.H. Zhu, W. Yu, D.H. Zhu, Y.C. Zhang, L.Y. Zhang, H.Q. Xie, Therm. Sci. Eng. Appl. 10, 011015 (2018)Google Scholar
  37. 37.
    Y.M. Liu, Z.J. Li, H. Lv, H.B. Tang, X.Y. Xing, Mater. Lett. 108, 84 (2013)CrossRefGoogle Scholar
  38. 38.
    X.L. Hu, J. Tian, Y.J. Xue, Y.J. Li, H.Z. Cui, ChemCatChem 9, 1511 (2017)CrossRefGoogle Scholar
  39. 39.
    T.B. Gorji, A.A. Ranjbar, S.N. Mirzababaei, Sol. Energy 119, 332 (2015)CrossRefGoogle Scholar
  40. 40.
    N. Hordy, D. Rabilloud, J.L. Meunier, S. Coulombe, Sol. Energy 105, 82 (2014)CrossRefGoogle Scholar
  41. 41.
    W.D. Drotning, Sol. Energy 20, 313 (1978)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental and Materials Engineering, College of EngineeringShanghai Polytechnic UniversityShanghaiChina
  2. 2.Research Center of Resource Recycling Science and EngineeringShanghai Polytechnic UniversityShanghaiChina

Personalised recommendations